Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2009_12_2_a12, author = {V. V. Shelukhin and M. A. Chernykh}, title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrm} {\cyrerev}{\cyrk}{\cyrs}{\cyrt}{\cyrr}{\cyre}{\cyrm}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrm} {\cyrs}{\cyrv}{\cyro}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyre} {\cyrt}{\cyre}{\cyrch}{\cyre}{\cyrn}{\cyri}{\cyrya} {{\CYRP}{\cyru}{\cyra}{\cyrz}{\cyre}{\cyrishrt}{\cyrl}{\cyrya}} {\cyrm}{\cyre}{\cyrzh}{\cyrd}{\cyru} {\cyrd}{\cyrv}{\cyru}{\cyrm}{\cyrya} {\cyrs}{\cyro}{\cyro}{\cyrs}{\cyrn}{\cyrery}{\cyrm}{\cyri} {\cyrc}{\cyri}{\cyrl}{\cyri}{\cyrn}{\cyrd}{\cyrr}{\cyra}{\cyrm}{\cyri}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {131--142}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_2_a12/} }
TY - JOUR AU - V. V. Shelukhin AU - M. A. Chernykh TI - Об одном экстремальном свойстве течения Пуазейля между двумя соосными цилиндрами JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2009 SP - 131 EP - 142 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2009_12_2_a12/ LA - ru ID - SJIM_2009_12_2_a12 ER -
%0 Journal Article %A V. V. Shelukhin %A M. A. Chernykh %T Об одном экстремальном свойстве течения Пуазейля между двумя соосными цилиндрами %J Sibirskij žurnal industrialʹnoj matematiki %D 2009 %P 131-142 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2009_12_2_a12/ %G ru %F SJIM_2009_12_2_a12
V. V. Shelukhin; M. A. Chernykh. Об одном экстремальном свойстве течения Пуазейля между двумя соосными цилиндрами. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 2, pp. 131-142. http://geodesic.mathdoc.fr/item/SJIM_2009_12_2_a12/
[1] Klimov D. M., Petrov A. G., Gorgievskii D. V., Vyazkoplasticheskie techeniya: dinamicheskii khaos, ustoichivost, peremeshivanie, Nauka, M., 2005
[2] Ballal B. Y., Rivlin R. S., “Flow of a Newtonian fluid between eccentric rotating cylinders”, Arch. Rational Mech. Anal., 62 (1976), 237–294 | DOI | MR | Zbl
[3] Wachs A., “Numerical simulation of steady Bingham flow through an eccentric annular crosssection by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods”, J. Non-Newtonian Fluid Mech., 142 (2007), 183–198 | DOI | Zbl
[4] Heyda J. F., “A Green's function solution for the case of laminar incompressible flow between non-concentric cylinders”, J. Franklin Institute, 267 (1959), 25–34 | DOI | MR
[5] Snyder W. T., Goldstein G. A., “An analysis of fully developed laminar flow in an eccentric annulus”, AIChE J., 11:3 (1965), 462–467 | DOI
[6] Nouri J. M., Umur H., Whitelaw J. H., “Flow of Newtonian and non-Newtonian fluids in a concentric and eccentric annuli”, J. Fluid Mech., 253 (1993), 617–641 | DOI
[7] Szabo P., Hassager O., “Flow of viscoplastic fluids in eccentric annular geometries”, J. Non-Newtonian Fluid Mech., 45 (1992), 149–169 | DOI | Zbl
[8] Shifrin E. G., “Ob analiticheskoi zavisimosti ot parametra reshenii kraevykh zadach dlya sistem uravnenii v chastnykh proizvodnykh”, Dokl. RAN, 371:6 (2000), 747–749 | MR | Zbl
[9] Zhermen P., Kurs mekhaniki sploshnykh sred, Vyssh. shkola, M., 1983
[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962