Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2008_11_4_a7, author = {S. S. Kutateladze}, title = {{\CYRM}{\cyra}{\cyrzh}{\cyro}{\cyrr}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyre}, {\cyrd}{\cyri}{\cyrs}{\cyrk}{\cyrr}{\cyre}{\cyrt}{\cyri}{\cyrz}{\cyra}{\cyrc}{\cyri}{\cyrya} {\cyri}~{\cyrs}{\cyrk}{\cyra}{\cyrl}{\cyrya}{\cyrr}{\cyri}{\cyrz}{\cyra}{\cyrc}{\cyri}{\cyrya}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {66--77}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a7/} }
S. S. Kutateladze. Мажорирование, дискретизация и~скаляризация. Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 4, pp. 66-77. http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a7/
[1] Kantorovich L. V., “Funktsionalnyi analiz i prikladnaya matematika”, Vestn. LGU, 1948, no. 6, 3–18 | MR
[2] Kantorovich L. V., “Funktsionalnyi analiz i prikladnaya matematika”, Uspekhi mat. nauk, 3:6 (1948), 89–185 | MR | Zbl
[3] Kantorovich L. V., “O poluuporyadochennykh lineinykh prostranstvakh i ikh primeneniyakh v teorii lineinykh operatsii”, Dokl. AN SSSR, 4:1–2 (1935), 11–14
[4] Kantorovich L. V., “Funktsionalnyi analiz (osnovnye idei)”, Sib. mat. zhurn., 27:1 (1987), 7–16 | MR
[5] Kantorovich L. V., “Printsip mazhorant i metod Nyutona”, Dokl. AN SSSR, 76:1 (1951), 17–20 | Zbl
[6] Sobolev S. L., Lyusternik L. A., Kantorovich L. V., “Funktsionalnyi analiz i vychislitelnaya matematika”, Trudy 3 Vsesoyuz. mat. s'ezda, T. 2: Kratkoe soderzhanie obzornykh i sektsionnykh dokladov (Moskva, iyun–iyul 1956 g.), Izd–vo AN SSSR, M., 1956, 43
[7] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003 | MR
[8] Kantorovich L. V., “Moi put v nauke”, Uspekhi mat. nauk, 42:2 (1987), 183–213 | MR | Zbl
[9] Kusraev A. G., Kutateladze S. S., Vvedenie v bulevoznachnyi analiz, Nauka, M., 2005 | MR | Zbl
[10] Gordon E. I., Kusraev A. G., Kutateladze S. S., Infinitezimalnyi analiz. Izbrannye temy, Nauka, M., 2008
[11] Kusraev A. G., Kutateladze S. S., Subdifferentsialnoe ischislenie. Teoriya i prilozheniya, Nauka, M., 2007 | Zbl
[12] Kutateladze S. S., “Variant nestandartnogo vypuklogo programmirovaniya”, Sib. mat. zhurn., 27:4 (1986), 84–92 | MR | Zbl
[13] Kutateladze S. S., “Vypuklye operatory”, Uspekhi mat. nauk, 34:1 (1979), 167–196 | MR | Zbl
[14] Kutateladze S. S., “Vypukloe $\varepsilon$-programmirovanie”, Dokl. AN SSSR, 245:5 (1979), 1048–1050 | MR | Zbl
[15] Zalinescu C., Convex Analysis in General Vector Spaces, World Sci. Publ., London e. a., 2002 | MR | Zbl
[16] Singer I., Abstract Convex Analysis, John Wiley Sons, New York, 1997 | MR | Zbl
[17] Chen G. Y., Huang X., Yang X., Vector Optimization. Set-Valued and Variational Analysis, Lecture Notes in Economics and Mathematical Systems, 541, Springer–Verl., Berlin, 2005 | MR | Zbl
[18] Loridan P., “$\varepsilon$-Solutions in vector minimization problems”, J. Optim. Theory Appl., 43:2 (1984), 265–276 | DOI | MR | Zbl
[19] Valyi I., “Approximate saddle-point theorems in vector optimization”, J. Optim. Theory Appl., 55:3 (1987), 435–448 | DOI | MR | Zbl
[20] Liu J. C., “$\varepsilon$-Duality theorem of nondifferentiable nonconvex multiobjective programming”, J. Optim. Theory Appl., 69:1 (1991), 153–167 | DOI | MR | Zbl
[21] Liu J. C., Yokoyama K., “$\varepsilon$-Optimality and duality for multiobjective fractional programming”, Comput. Math. Appl., 37:8 (1999), 119–128 | DOI | MR | Zbl
[22] Liu J. C., “$\varepsilon$-Properly efficient solutions to nondifferentiable multiobjective programming problems”, Appl. Math. Lett., 12:6 (1999), 109–113 | DOI | MR | Zbl
[23] Gutiérrez C., Jiménez B., Novo V., “On approximate solutions in vector optimization problems via scalarization”, Comput. Optim. Appl., 35:3 (2006), 305–324 | DOI | MR | Zbl
[24] Gutiérrez C., Jiménez B., Novo V., “Optimality conditions for metrically consistent approximate solutions in vector optimization”, J. Optim. Theory Appl., 133:1 (2007), 49–64 | DOI | MR | Zbl