Использование спектрального метода Лагерра для решения линейной двумерной динамической задачи для пористых сред
Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 3, pp. 86-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2008_11_3_a7,
     author = {Kh. Kh. Imomnazarov and A. A. Mikhailov},
     title = {{\CYRI}{\cyrs}{\cyrp}{\cyro}{\cyrl}{\cyrsftsn}{\cyrz}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyre} {\cyrs}{\cyrp}{\cyre}{\cyrk}{\cyrt}{\cyrr}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrm}{\cyre}{\cyrt}{\cyro}{\cyrd}{\cyra} {{\CYRL}{\cyra}{\cyrg}{\cyre}{\cyrr}{\cyrr}{\cyra}} {\cyrd}{\cyrl}{\cyrya} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrd}{\cyrv}{\cyru}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyrishrt} {\cyrd}{\cyri}{\cyrn}{\cyra}{\cyrm}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyrishrt} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrd}{\cyrl}{\cyrya} {\cyrp}{\cyro}{\cyrr}{\cyri}{\cyrs}{\cyrt}{\cyrery}{\cyrh} {\cyrs}{\cyrr}{\cyre}{\cyrd}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--95},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2008_11_3_a7/}
}
TY  - JOUR
AU  - Kh. Kh. Imomnazarov
AU  - A. A. Mikhailov
TI  - Использование спектрального метода Лагерра для решения линейной двумерной динамической задачи для пористых сред
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2008
SP  - 86
EP  - 95
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2008_11_3_a7/
LA  - ru
ID  - SJIM_2008_11_3_a7
ER  - 
%0 Journal Article
%A Kh. Kh. Imomnazarov
%A A. A. Mikhailov
%T Использование спектрального метода Лагерра для решения линейной двумерной динамической задачи для пористых сред
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2008
%P 86-95
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2008_11_3_a7/
%G ru
%F SJIM_2008_11_3_a7
Kh. Kh. Imomnazarov; A. A. Mikhailov. Использование спектрального метода Лагерра для решения линейной двумерной динамической задачи для пористых сред. Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 3, pp. 86-95. http://geodesic.mathdoc.fr/item/SJIM_2008_11_3_a7/

[1] Frenkel Ya. I., “K teorii seismicheskikh i seismoelektricheskikh yavlenii vo vlazhnoi pochve”, Izv. AN SSSR. Ser. Geografiya i geofizika, 8:4 (1944), 133–146 | MR

[2] Biot M. A., “Theory of propagation of elastic waves in fluid-saturated porous solid. I. Lowfrequency range”, J. Acoustic. Soc. Amer., 28 (1956), 168–178 | DOI | MR

[3] Dorovskii V. N., “Kontinualnaya teoriya filtratsii”, Geologiya i geofizika, 1989, no. 7, 39–45

[4] Dorovskii V. N., Perepechko Yu. V., Romenskii E. I., “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 1993, no. 1, 100–111

[5] Blokhin A. M., Dorovsky V. N., Mathematical Modelling in the Theory of Multivelocity Continuum, Nova Sci., New York, 1995 | MR

[6] Zhu X., McMechan G. A., “Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory”, Geophysics, 56 (1991), 328–339 | DOI

[7] Zeng Y. Q., He J. Q., Liu Q. H., “The application of the perfectly matched layer in numerical modeling of wave propagation in poroelasticmedia”, Geophysics, 66 (2001), 1258–1266 | DOI

[8] Dai N., Vafidis A., Kanasewich E. R., “Wave propagation in heterogeneous, porous media: a velocity-stress, finite-difference method”, Geophysics, 60 (1995), 327–340 | DOI

[9] Philippacopoulos A. J., “Lamb's problem for fluid-saturated porous media”, Bull. Seismolog. Soc. Amer., 78 (1988), 908–923

[10] Miroshnikov V. V., Fatyanov A. G., “Poluanaliticheskii metod rascheta volnovykh polei v sloistykh poristykh sredakh”, Matematicheskoe modelirovanie v geofizike (Novosibirsk), 1993, no. 1, 27–57

[11] Konyukh G. V., Mikhailenko B. G., “Application of integral Laguerre transformation for solving dynamic seismic problem”, Bull. Novosibirsk Comput. Center. Ser. Math. Modeling in Geophysics, 1998, no. 4, 79–91 | Zbl

[12] Mikhailenko B. G., “Spectral Laguerre method for the approximate solution of time dependent problems”, Appl. Math. Lett., 12:4 (1999), 105–110 | DOI | MR | Zbl

[13] Mikhailenko B. G., Mikhailov A. A., Reshetova G. V., “Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method”, Pure Appl. Geophys., 160 (2003), 1207–1224 | DOI

[14] Mikhailenko B. G., Mikhailov A. A., Reshetova G. V., “Numerical viscoelastic modeling by the spectral Laguerre method”, Geophys. Prospecting, 51 (2003), 37–48 | DOI

[15] Imomnazarov Kh. Kh., “A mathematical model for the movement of a conducting liquid through a conducting porous medium. I. Excitation of oscillations of the magnetic field by the surface rayleigh wave”, Math. Comput. Modelling, 24:1 (1996), 79–84 | DOI | MR | Zbl

[16] Imomnazarov Kh. Kh., “Neskolko zamechanii o sisteme uravnenii Bio”, Dokl. RAN, 373:4 (2000), 536–537 | MR | Zbl

[17] Imomnazarov Kh. Kh., “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl

[18] Levander A. R., “Fourth order velocity-stress finite-difference scheme”, Proc. 57 SEG Annual Meeting, New Orleans, 1987, 234–245