Достаточные условия центра для некоторых классов полиномиальных совершенно изохронных систем
Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 1, pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2008_11_1_a2,
     author = {E. P. Volokitin},
     title = {{\CYRD}{\cyro}{\cyrs}{\cyrt}{\cyra}{\cyrt}{\cyro}{\cyrch}{\cyrn}{\cyrery}{\cyre} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya} {\cyrc}{\cyre}{\cyrn}{\cyrt}{\cyrr}{\cyra} {\cyrd}{\cyrl}{\cyrya} {\cyrn}{\cyre}{\cyrk}{\cyro}{\cyrt}{\cyro}{\cyrr}{\cyrery}{\cyrh} {\cyrk}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyro}{\cyrv} {\cyrp}{\cyro}{\cyrl}{\cyri}{\cyrn}{\cyro}{\cyrm}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyro}{\cyrv}{\cyre}{\cyrr}{\cyrsh}{\cyre}{\cyrn}{\cyrn}{\cyro} {\cyri}{\cyrz}{\cyro}{\cyrh}{\cyrr}{\cyro}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {37--45},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a2/}
}
TY  - JOUR
AU  - E. P. Volokitin
TI  - Достаточные условия центра для некоторых классов полиномиальных совершенно изохронных систем
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2008
SP  - 37
EP  - 45
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a2/
LA  - ru
ID  - SJIM_2008_11_1_a2
ER  - 
%0 Journal Article
%A E. P. Volokitin
%T Достаточные условия центра для некоторых классов полиномиальных совершенно изохронных систем
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2008
%P 37-45
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a2/
%G ru
%F SJIM_2008_11_1_a2
E. P. Volokitin. Достаточные условия центра для некоторых классов полиномиальных совершенно изохронных систем. Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 1, pp. 37-45. http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a2/

[1] Chavarriga J., Sabatini M., “A survey of isochronous centers”, Qualitative Theory of Dynam. Systems, 1:1 (1999), 1–70 | DOI | MR

[2] Algaba A., Reyes M., Bravo A., “Geometry of the uniformly isochronous centers with polynomial commutators”, Differential Equations Dynam. Systems, 10:3–4 (2002), 257–275 | MR | Zbl

[3] Algaba A., Reyes M., “Centers with degenerate infinity and their commutators”, J. Math. Anal. Appl., 78:1 (2003), 109–124 | DOI | MR

[4] Algaba A., Reyes M., “Computing center conditions for vector fields with constant angular speed”, J. Comput. Appl. Math., 154:1 (2003), 143–159 | DOI | MR | Zbl

[5] Conti R., “Centers of planar polynomial systems. A review”, Matematiche, 53:2 (1998), 207–240 | MR

[6] Cherkas L. A., “O chisle predelnykh tsiklov odnoi avtonomnoi sistemy vtorogo poryadka”, Differents. uravneniya, 12:5 (1976), 944–946 | MR | Zbl

[7] Schlomiuk D., “Algebraic and geometric aspects of the theory of polynomial vector fields”, Bifurcations and Periodic Orbits of Vector fields (Montréal, July 13–24, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993, 429–467 | MR | Zbl

[8] Amelkin V. V., Lukashevich N. A., Sadovskii A. P., Nelineinye kolebaniya v sistemakh vtorogo poryadka, Izd-vo Belorus. gos. un-ta, Minsk, 1982 | MR

[9] Giné J., “The center problem for a linear center perturbed by homogeneous polynomials”, Acta. Math. Sin., 22:6 (2006), 1613–1620 | DOI | MR | Zbl

[10] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostezkhizdat, M., L., 1949

[11] Sabatini M., “Characterizing isochronous centres by Lie brackets”, Differential Equations Dynam. Systems, 5:1 (1997), 91–99 | MR | Zbl

[12] Devlin J., “Coexisting isochronous and nonisochronous centres”, Bull. London Math. Soc., 28:5 (1996), 495–500 | DOI | MR | Zbl

[13] Volokitin E. P., Ivanov V. V., “Izokhronnost i kommutiruemost vektornykh polei”, Sib. mat. zhurn., 40:1 (1999), 30–48 | MR | Zbl

[14] Conti R., “Uniformly isochronous centers of polynomial systems in $R^2$”, Differential Equations, Dynamical Systems, and Control Science, Lect. Notes Pure and Appl. Math., 152, Marcel Dekker, New York, 1994, 21–31 | MR | Zbl

[15] Volokitin E. P., “Center conditions for a simple class of a quintic systems”, Internat. J. Math. Math. Sci., 29:11 (2002), 625–632 | DOI | MR | Zbl

[16] Algaba A., Reyes M., Bravo A., “Uniformly isochronous quintic planar vector field”, Internat. Conf. Differential Equations, Proc. Conf. Equadiff 99, V. 2 (Berlin, August 1–7, 1999), World Scientific, Singapore, 2000, 1415–1417 | MR | Zbl

[17] Collins C. B., “Poincaré's reversibility conditions”, J. Math. Anal. Appl., 259:1 (2001), 168–187 | DOI | MR | Zbl

[18] Mazzi L., Sabatini M., “Commutators and linearizations of isochronous centers”, Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11:2 (2000), 81–98 | MR | Zbl