Компьютерное моделирование выпучивания нанотрубки при кручении
Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 1, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2008_11_1_a0,
     author = {B. D. Annin and S. N. Korobeinikov and A. V. Babichev},
     title = {{\CYRK}{\cyro}{\cyrm}{\cyrp}{\cyrsftsn}{\cyryu}{\cyrt}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyre} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyre} {\cyrv}{\cyrery}{\cyrp}{\cyru}{\cyrch}{\cyri}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya} {\cyrn}{\cyra}{\cyrn}{\cyro}{\cyrt}{\cyrr}{\cyru}{\cyrb}{\cyrk}{\cyri} {\cyrp}{\cyrr}{\cyri} {\cyrk}{\cyrr}{\cyru}{\cyrch}{\cyre}{\cyrn}{\cyri}{\cyri}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a0/}
}
TY  - JOUR
AU  - B. D. Annin
AU  - S. N. Korobeinikov
AU  - A. V. Babichev
TI  - Компьютерное моделирование выпучивания нанотрубки при кручении
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2008
SP  - 3
EP  - 22
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a0/
LA  - ru
ID  - SJIM_2008_11_1_a0
ER  - 
%0 Journal Article
%A B. D. Annin
%A S. N. Korobeinikov
%A A. V. Babichev
%T Компьютерное моделирование выпучивания нанотрубки при кручении
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2008
%P 3-22
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a0/
%G ru
%F SJIM_2008_11_1_a0
B. D. Annin; S. N. Korobeinikov; A. V. Babichev. Компьютерное моделирование выпучивания нанотрубки при кручении. Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/SJIM_2008_11_1_a0/

[1] Rakov A. G., Nanotrubki i fullereny, Logos, M., 2006

[2] Kobayasi N., Vvedenie v nanotekhnologiyu, Binom, M., 2005

[3] Yakobson B. I., Brabec C. J., Bernholc J., “Nanomechanics of carbon tubes: instabilities beyond linear response”, Phys. Rev. Lett., 76:14 (1996), 2511–2514 | DOI

[4] Gao G., Cagin T., Goddard III W. A., “Energetics, structure, mechanical and vibrational properties of single walled carbon nanotubes”, Nanotechnology, 9:3 (1998), 184–191 | DOI

[5] Ozaki T., Iwasa Y., Mitani T., “Stiffness of single-walled carbon nanotubes under large strain”, Phys. Rev. Lett., 84:8 (2000), 1712–1715 | DOI

[6] Arroyo M., Belytschko T., “An atomistic-based finite deformation membrane for single layer crystalline films”, J. Mech. Phys. Solids, 50:9 (2002), 1941–1977 | DOI | MR | Zbl

[7] Arroyo M., Belytschko T., “A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes”, Mechanics of Materials, 35:3–6 (2003), 193–215 | DOI

[8] Arroyo M., Belytschko T., “Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes”, Internat. J. Numer. Meth. Engrg., 59:3 (2004), 419–456 | DOI | MR | Zbl

[9] Arroyo M., Belytschko T., “Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule”, Phys. Rev. B, 69 (2004), 115415 | DOI | Zbl

[10] Liu B., Huang Y., Jiang H., Qu S., Hwang K. C., “The atomic-scale finite element method”, Comput. Methods Appl. Mech. Engrg., 193:17–20 (2004), 1849–1864 | DOI | Zbl

[11] Wang Y., Wang X., Ni X., Wu H., “Simulation of the elastic response and the buckling modes of single-walled carbon nanotube”, Comp. Materials Sci., 32:2 (2005), 141–146 | DOI

[12] Goldshtein R. V., Chentsov A. V., “Diskretno-kontinualnaya model nanotrubki”, Izv. RAN. Mekhanika tverdogo tela, 2005, no. 4, 57–74

[13] Liu B., Jiang H., Huang Y., Qu S., Yu M.-F., “Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes”, Phys. Rev. B, 72 (2005), 035435 | DOI

[14] Leung A. Y. T., Guo X., He X. Q., “Postbuckling of carbon nanotubes by atomic-scale finite element”, J. Appl. Phys., 99 (2006), 124308 | DOI

[15] Sears A., Batra R. C., “Buckling of multiwalled carbon nanotubes under axial compression”, Phys. Rev. B, 73 (2006), 085410 | DOI

[16] Zhang C.-L., Shen H.-S., “Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation”, Carbon., 44:13 (2006), 2608–2616 | DOI

[17] Liew K. M.,Wong C. H., Tan M. J., “Tensile and compressive properties of carbon nanotube bundles”, Acta Materialia, 54:1 (2006), 225–231 | DOI

[18] Yang J. Z., E W., “Generalized Cauchy.Born rules for elastic deformation of sheets, plates, and rods: derivation of continuum models from atomistic models”, Phys. Rev. B, 74 (2006), 184110 | DOI

[19] Hu N., Nunoya K., Pan D., Okabe T., Fukanaga H., “Prediction of buckling characteristics of carbon nanotubes”, Internat. J. Solids Structures, 44:20 (2007), 6535–6550 | DOI

[20] Zhang H. W., Wang L., Wang J. B., “Computer simulation of buckling behavior of doublewalled carbon nanotubes with abnormal interlayer distances”, Comp. Materials Sci., 39:3 (2007), 664–672 | DOI

[21] Dumitrică T., James R. D., “Objective molecular dynamics”, J. Mech. Phys. Solids, 55:10 (2007), 2206–2236 | DOI | MR

[22] Zhang Y. Y., Tan V. B. C., Wang C. M., “Effect of strain rate on the buckling behavior of single- and double-walled carbon nanotubes”, Carbon., 45:3 (2007), 514–523 | DOI

[23] Korobeynikov S. N., Babichev A. V., Numerical simulation of dynamic deformation and buckling of nanostructures, Interquadrennial Conf., Moscow, 7-12 July, 2007: CD ICF full papers, Institute for Problems in Mechanics, M., 2007

[24] Zhang Ch.-L., Shen H.-S., “Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments”, Phys. Rev. B, 75 (2007), 045408 | DOI

[25] Wang Q., Duan W. H., Liew K. M., He X. Q., “Inelastic buckling of carbon nanotubes”, Appl. Phys. Let., 90:3 (2007), 033110 | DOI

[26] Guo X., Leung A. Y. T., He X. Q., Jiang H., Huang Y., “Bending buckling of single-walled carbon nanotubes by atomic-scale finite element”, Composites. Part B: Engineering, 39:1 (2008), 202–208 | DOI

[27] Krivtsov A. M., Deformatsiya i razrushenie tverdykh tel s mikrostrukturoi, Fizmatlit, M., 2007

[28] Korobeinikov S. N., Primenenie metoda konechnykh elementov k resheniyu nelineinykh zadach po deformirovaniyu i potere ustoichivosti atomnykh reshetok, Preprint No 1–97, Institut gidrodinamiki SO RAN, Novosibirsk, 1997, 34 pp. | MR

[29] Korobeinikov S. N., “The numerical solution of nonlinear problems on deformation and buckling of atomic lattices”, Internat. J. Fracture, 128:1 (2004), 315–323 | DOI | MR

[30] Korobeynikov S. N., Determination of equilibrium configurations of atomic lattices at quasistatic deformation, 16 Europ. Conf. of Fracture, Alexandroupolis, 2006. Sect. IT2 “Failure Mechanisms”: CD ECF 16 full papers

[31] Dluźewski P., Traczykowski P., “Numerical simulation of atomic positions in quantum dot by means of molecular statics”, Arch. Mech., 55:5–6 (2003), 393–406 | Zbl

[32] Korobeynikov S. N., Buckling criteria of atomic lattices, 11 Internat. Conf. on Fracture, Turino, 2005. Sect. 30 “Nano- or Micro-Scale”, ID 5597: CD ICF 11 full papers

[33] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, Izd-vo SO RAN, Novosibirsk, 2000

[34] Korobeynikov S. N., “Nonlinear equations of deformation of atomic lattices”, Arch. Mech., 57:6 (2005), 457–475

[35] Curnier A., Computational Methods in Solid Mechanics, Kluwer Acad. Publ., Dordretch, 1994 | MR | Zbl

[36] Odegard G. M., Gates T. S., Nicholson L. M., Wise E., “Equivalent-continuum modeling of nano-structured materials”, Composites Sci. and Technology, 62:14 (2002), 1869–1880 | DOI

[37] Belytschko T., Xiao S. P., Schatz G. C., Ruoff R. S., “Atomistic simulations of nanotube fracture”, Phys. Rev. B, 65 (2002), 235430 | DOI

[38] Lee L. H. N., “On dynamic stability and quasi-bifurcation”, Internat. J. Non-Linear Mechanics, 16:1 (1981), 79–87 | DOI | MR | Zbl

[39] Lee L. H. N., “Flexural waves in rods within an axial plastic compressive wave”, Wave Motion, 3 (1981), 243–255 | DOI | Zbl

[40] Kleiber M., Kotula W., Saran M., “Dynamic quasi-bifurcations in structures subjected to step loadings”, Proc. Europe-US Symp. on Finite Element Methods for Nonlinear Problems, Springer-Verl., Berlin, 1985, 529–538

[41] Krätzig W. B., Nawrotzski P., Wriggers P., Reese S., “Fundamentals of nonlinear instabilities and response analysis of discretized systems”, Nonlinear Stability of Structures, CISM Courses and Lectures, 342, Springer-Verl., Wien, 1995, 245–415 | MR

[42] Bathe K.-J., Finite Element Procedures, Prentice Hall, New Jersey, 1996

[43] Zeinkiewicz O. C., Taylor R. L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000

[44] Elsgolts L. A., Differentsialnye uravneniya i variatsionnoe ischislenie M., Nauka, 1969

[45] Korobeinikov S. N., Agapov V. P., Bondarenko M. I., Soldatkin A. N., “The general purpose nonlinear finite element structural analysis program PIONER”, Proc. Internat. Conf. on Numerical Methods and Applications, Publ. House of the Bulgarian Acad. of Sci., Sofia, 1989, 228–233