Qualitative analysis of a singularly perturbed system in~$\mathbb R^3$
Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 4, pp. 76-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2007_10_4_a7,
     author = {L. I. Kononenko},
     title = {Qualitative analysis of a singularly perturbed system in~$\mathbb R^3$},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {76--82},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a7/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - Qualitative analysis of a singularly perturbed system in~$\mathbb R^3$
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2007
SP  - 76
EP  - 82
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a7/
LA  - ru
ID  - SJIM_2007_10_4_a7
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T Qualitative analysis of a singularly perturbed system in~$\mathbb R^3$
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2007
%P 76-82
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a7/
%G ru
%F SJIM_2007_10_4_a7
L. I. Kononenko. Qualitative analysis of a singularly perturbed system in~$\mathbb R^3$. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 4, pp. 76-82. http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a7/

[1] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR

[2] Goldshtein V. M., Sobolev V. A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, Izd-vo In-ta matematiki SO AN SSSR, Novosibirsk, 1988

[3] Shmolyan P., Wechselberg M., “Relaxation oscillation in $\mathbb R^3$”, J. Differential Equations, 200:1 (2004), 69–104 | DOI | MR

[4] Novikov S. P., Taimanov I. A., Sovremennye geometricheskie struktury i polya, Izd-vo MTsIMO, M., 2005

[5] Kononenko L. I., “Kachestvennyi analiz singulyarno vozmuschennykh sistem s odnoi ili dvumya medlennymi i bystrymi peremennymi”, Sib. zhurn. industr. matematiki, 5:4(12) (2002), 55–62 | MR | Zbl

[6] Elsgolts L. E., Kachestvennye metody v matematicheskom analize, Gostekhizdat, M., 1955

[7] Khassard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR | Zbl

[8] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218 | MR

[9] Tikhonov A. N., “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Mat. sb., 22(64):2 (1948), 193–204 | Zbl

[10] Tikhonov A. N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Mat. sb., 31(73):3 (1952), 575–586 | MR | Zbl

[11] Volokitin E. P., Treskov S. A., “Kachestvennyi analiz matematicheskoi modeli reaktsii kataliticheskogo okisleniya”, Matematicheskie problemy khimicheskoi kinetiki, Nauka, Novosibirsk, 1989, 149–175 | MR

[12] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[13] Kononenko L. I., “Relaksatsionnye kolebaniya i «sborka»”, Izv. RAEN. Ser. MMMiU, 9:1–2 (2005), 32–43

[14] Kononenko L. I., “Vliyanie formy integralnogo mnogoobraziya na vozniknovenie relaksatsionnykh kolebanii”, Sib. zhurn. industr. matematiki, 9:2(26) (2006), 75–80 | MR