Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2007_10_4_a6, author = {A. V. Kel'manov and L. V. Mikhailova}, title = {Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {61--75}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a6/} }
TY - JOUR AU - A. V. Kel'manov AU - L. V. Mikhailova TI - Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2007 SP - 61 EP - 75 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a6/ LA - ru ID - SJIM_2007_10_4_a6 ER -
%0 Journal Article %A A. V. Kel'manov %A L. V. Mikhailova %T Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments %J Sibirskij žurnal industrialʹnoj matematiki %D 2007 %P 61-75 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a6/ %G ru %F SJIM_2007_10_4_a6
A. V. Kel'manov; L. V. Mikhailova. Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 4, pp. 61-75. http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a6/
[1] Kelmanov A. V., Khamidullin S. A., “Raspoznavanie kvaziperiodicheskoi posledovatelnosti, obrazovannoi iz zadannogo chisla odinakovykh podposledovatelnostei”, Sib. zhurn. industr. matematiki, 2:1 (1999), 53–74 | MR
[2] Kelmanov A. V., Khamidullin S. A., “Raspoznavanie kvaziperiodicheskoi posledovatelnosti, obrazovannoi iz zadannogo chisla usechennykh podposledovatelnostei”, Sib. zhurn. industr. matematiki, 5:1(9) (2002), 85–104 | MR
[3] Kelmanov A. V., Khamidullin S. A., Okolnishnikova L. V., “Raspoznavanie kvaziperiodicheskoi posledovatelnosti, vklyuchayuschei odinakovye podposledovatelnosti-fragmenty”, Sib. zhurn. industr. matematiki, 5:4(12) (2002), 38–54 | MR
[4] Kelmanov A. V., Khamidullin S. A., “Raspoznavanie chislovoi posledovatelnosti po fragmentam kvaziperiodicheski povtoryayuscheisya etalonnoi posledovatelnosti”, Sib. zhurn. industr. matematiki, 7:2(18) (2004), 68–87 | MR
[5] Kelmanov A. V., Mikhailova L. V., “Raspoznavanie chislovoi posledovatelnosti, vklyuchayuschei serii kvaziperiodicheski povtoryayuschikhsya etalonnykh fragmentov. Sluchai iz- vestnogo chisla fragmentov”, Sib. zhurn. industr. matematiki, 8:3(23) (2005), 69–86 | MR
[6] Kligene N., Telksnis L., “Metody obnaruzheniya momentov izmeneniya svoistv sluchainykh protsessov”, Avtomatika i telemekhanika, 1983, no. 10, 5–56 | MR | Zbl
[7] Torgovitskii I. Sh., “Metody opredeleniya momenta izmeneniya veroyatnostnykh kharakteristik sluchainykh velichin”, Zarubezhnaya radioelektronika, 1976, no. 1, 3–52
[8] Nikiforov I. V., Posledovatelnoe obnaruzhenie izmeneniya svoistv vremennykh ryadov, Nauka, M., 1983 | MR
[9] Zhiglyavskii A. A., Kraskovskii A. E., Obnaruzhenie razladki sluchainykh protsessov v zadachakh radiotekhniki, Izd-vo LGU, L., 1988
[10] Bassvil M., Vilski A., Banvenist A. i dr., Obnaruzhenie izmeneniya svoistv signalov i dinamicheskikh sistem, Mir, M., 1989
[11] Darkhovskii B. S., “O dvukh zadachakh otsenivaniya momentov izmeneniya veroyatnostnykh kharakteristik sluchainoi posledovatelnosti”, Teoriya veroyatnostei i ee primeneniya, 29:3 (1984), 464–473 | MR | Zbl
[12] Darkhovskii B. S., “Neparametricheskii metod otsenivaniya intervalov odnorodnosti sluchainoi posledovatelnosti”, Teoriya veroyatnostei i ee primeneniya, 30:4 (1985), 795–799 | MR
[13] Brodskii B. E., Darkhovskii B. S., “Sravnitelnyi analiz nekotorykh neparametricheskikh metodov skoreishego obnaruzheniya momenta “razladki” sluchainoi posledovatelnosti”, Teoriya veroyatnostei i ee primeneniya, 35:4 (1990), 655–668 | MR
[14] Darkhovskii B. S., “Retrospektivnoe obnaruzhenie “razladki” v nekotorykh modelyakh regressionnogo tipa”, Teoriya veroyatnostei i ee primeneniya, 40:4 (1995), 898–903 | MR
[15] Gini F., Farina A., Greco M., “Selected list of references on radar signal processing”, IEEE Trans. Aerospace and Electronic Systems, 37:1 (2001), 329–359 | DOI | MR
[16] Van Trees H. L., Detection, Estimation, and Modulation Theory, Part I, John Wiley Sons, New York, 1968
[17] Helstrom C. W., Elements of Signal Detection and Estimation, Prentice-Hall, Englewood Cliffs, 1995 | Zbl
[18] Kelmanov A. V., Okolnishnikova L. V., “Aposteriornoe sovmestnoe obnaruzhenie i razlichenie podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Sib. zhurn. industr. matematiki, 3:2(6) (2000), 115–139 | MR
[19] Kelmanov A. V., Khamidullin S. A., Okolnishnikova L. V., “Aposteriornoe obnaruzhenie odinakovykh podposledovatelnostei-fragmentov v kvaziperiodicheskoi posledovatelnosti”, Sib. zhurn. industr. matematiki, 5:2(10) (2002), 94–108 | MR
[20] Duda R. O., Hart P. E., Pattern Classification and Scene Analysis, John Wiley Sons, New York, 1973 | Zbl
[21] Fukunaga K., Introduction to Statistical Pattern Recognition, Acad. Press, New York, 1990 | MR | Zbl
[22] Fu K. S., Syntactic Methods in Pattern Recognition, Acad. Press, New York, 1974 | MR
[23] Kelmanov A. V., “Granitsy veroyatnosti oshibki raspoznavaniya kvaziperiodicheskoi posledovatelnosti, obrazovannoi iz zadannogo chisla odinakovykh podposledovatelnostei”, Sib. zhurn. vychisl. matematiki, 3:4 (2000), 333–344
[24] Kelmanov A. V., Mikhailova L. V., “Sovmestnoe obnaruzhenie v kvaziperiodicheskoi posledovatelnosti zadannogo chisla fragmentov iz etalonnogo nabora i ee razbienie na uchastki, vklyuchayuschie serii odinakovykh fragmentov”, Zhurn. vychisl. matematiki i mat. fiziki, 46:1 (2006), 172–189 | MR