Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2007_10_2_a6, author = {A. A. Illarionov}, title = {A nonlocal boundary value problem with overdetermination for an elliptic equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {64--69}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a6/} }
TY - JOUR AU - A. A. Illarionov TI - A nonlocal boundary value problem with overdetermination for an elliptic equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2007 SP - 64 EP - 69 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a6/ LA - ru ID - SJIM_2007_10_2_a6 ER -
A. A. Illarionov. A nonlocal boundary value problem with overdetermination for an elliptic equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 2, pp. 64-69. http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a6/
[1] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kniga, Novosibirsk, 1999
[2] Fabre C., “Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems”, ESAIM: Control, Optimisation and Calculation of Variations, 1 (1996), 267–302 ; http://www.emath.gr/coc | DOI | MR | Zbl
[3] Fursikov A. V., Emanulov O. Yu., “Lokalnaya tochnaya upravlyaemost uravnenii Bussineska”, Vestnik Ros. un-ta druzhby narodov. Ser. Matematika, 1996, no. 3(1), 177–194 | MR | Zbl
[4] Fursikov A. V., Immanuilov O. Yu., “Local exact boundary controllability of the Boussinesq equation”, SIAM J. Control Optim., 36:2 (1998), 391–421 | DOI | MR | Zbl