A nonlocal boundary value problem with overdetermination for an elliptic equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 2, pp. 64-69
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{SJIM_2007_10_2_a6,
author = {A. A. Illarionov},
title = {A nonlocal boundary value problem with overdetermination for an elliptic equation},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {64--69},
year = {2007},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a6/}
}
A. A. Illarionov. A nonlocal boundary value problem with overdetermination for an elliptic equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 2, pp. 64-69. http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a6/
[1] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kniga, Novosibirsk, 1999
[2] Fabre C., “Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems”, ESAIM: Control, Optimisation and Calculation of Variations, 1 (1996), 267–302 ; http://www.emath.gr/coc | DOI | MR | Zbl
[3] Fursikov A. V., Emanulov O. Yu., “Lokalnaya tochnaya upravlyaemost uravnenii Bussineska”, Vestnik Ros. un-ta druzhby narodov. Ser. Matematika, 1996, no. 3(1), 177–194 | MR | Zbl
[4] Fursikov A. V., Immanuilov O. Yu., “Local exact boundary controllability of the Boussinesq equation”, SIAM J. Control Optim., 36:2 (1998), 391–421 | DOI | MR | Zbl