Effective conditions for the pointwise-completeness of linear systems with delay
Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 96-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2007_10_1_a9,
     author = {A. A. Korobov},
     title = {Effective conditions for the pointwise-completeness of linear systems with delay},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {96--114},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a9/}
}
TY  - JOUR
AU  - A. A. Korobov
TI  - Effective conditions for the pointwise-completeness of linear systems with delay
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2007
SP  - 96
EP  - 114
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a9/
LA  - ru
ID  - SJIM_2007_10_1_a9
ER  - 
%0 Journal Article
%A A. A. Korobov
%T Effective conditions for the pointwise-completeness of linear systems with delay
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2007
%P 96-114
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a9/
%G ru
%F SJIM_2007_10_1_a9
A. A. Korobov. Effective conditions for the pointwise-completeness of linear systems with delay. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 96-114. http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a9/

[1] Weiss L., “On the controllability of delay differential system”, SIAM J. Control., 5:4 (1967), 575–587 | DOI | MR

[2] Metelskii A. V., “Problemy tochechnoi polnoty v teorii upravleniya differentsialno-raznostnymi sistemami”, Uspekhi mat. nauk, 49:2(296) (1994), 103–140 | MR

[3] Brooks R. M., Schmitt K., “Pointwise completeness of differential-difference equations”, Rocky Mountain J. Math., 3:3 (1973), 11–14 | MR | Zbl

[4] Zverkin A. M., “O tochechnoi polnote sistem s zapazdyvaniem”, Differents. uravneniya, 9:3 (1973), 430–436 | MR | Zbl

[5] Popov V. M., “Pointwise degeneracy of linear, time-invariant, delay-differential equations”, J. Differential Equations, 11:3 (1972), 541–561 | DOI | MR | Zbl

[6] Zmood R. B., McClamroch N. H., “On the pointwise completeness of differential-difference equations”, J. Differential Equations, 12:3 (1972), 474–486 | DOI | MR | Zbl

[7] Minyuk S. A., Lomakina L. V., “O tochechno vyrozhdennykh sistemakh s otklonyayuschimsya argumentom”, Differents. uravneniya, 33:11 (1997), 1507–1515 | MR | Zbl

[8] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[9] Kappel F., “On degeneracy of functional-differential equations”, J. Differential Equations, 22:2 (1976), 250–267 | DOI | MR | Zbl

[10] Asner B. A., Halanay A., “Algebraic theory of pointwise degenerate of delay-differential systems”, J. Differential Equations, 14:2 (1973), 293–306 | DOI | MR | Zbl

[11] Karpuk V. V., “K probleme tochechnoi vyrozhdennosti”, Problemy optimalnogo upravleniya, Nauka i tekhnika, Minsk, 1981, 208–224 | MR

[12] Elgondyev K. K., “Differentsialnye uravneniya s zapazdyvaniem i s impulsnym vozdeistviem”, Dokl. AN RUz, 2005, no. 1, 11–14

[13] Kappel F., “Degenerate difference-differential equations. Algebraic theory”, J. Differential Equations, 24:1 (1977), 99–126 | DOI | MR | Zbl

[14] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR