A mathematical model of the quasi-two-dimensional fluid flow in the compensator channel of a drilling mechanism
Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2007_10_1_a5,
     author = {A. F. Voevodin and E. V. Vorozhtsov},
     title = {A mathematical model of the quasi-two-dimensional fluid flow in the compensator channel of a drilling mechanism},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {52--61},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a5/}
}
TY  - JOUR
AU  - A. F. Voevodin
AU  - E. V. Vorozhtsov
TI  - A mathematical model of the quasi-two-dimensional fluid flow in the compensator channel of a drilling mechanism
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2007
SP  - 52
EP  - 61
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a5/
LA  - ru
ID  - SJIM_2007_10_1_a5
ER  - 
%0 Journal Article
%A A. F. Voevodin
%A E. V. Vorozhtsov
%T A mathematical model of the quasi-two-dimensional fluid flow in the compensator channel of a drilling mechanism
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2007
%P 52-61
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a5/
%G ru
%F SJIM_2007_10_1_a5
A. F. Voevodin; E. V. Vorozhtsov. A mathematical model of the quasi-two-dimensional fluid flow in the compensator channel of a drilling mechanism. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 52-61. http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a5/

[1] Zhao G., Entwicklung und Optimierung eines hydraulischen Bohrhammers, Institut für Erdöl- und Erdgastechnik der Technischen Universität Clausthal, Clausthal, Zellerfeld, 1998

[2] Schacht W., Vorozhtsov E. V., Voevodin A. F., Ostapenko V. V., “Numerical modelling of hydraulic jumps in a spiral channel with rectangular cross section”, Fluid Dynamics Res., 31:3 (2002), 185–213 | DOI

[3] Voevodin A., Ostapenko V., Vorozhtsov E., “Optimizatsiya parametrov spiralnykh kompensatorov udarno-vraschatelnykh mekhanizmov podachi dolota na osnove rezultatov chislennogo modelirovaniya gidravlicheskikh udarov”, Tekhnologii TEK, 2005, no. 5, 30–35

[4] Schacht W., Vorozhtsov E. V., Voevodin A. F., “Numerical modelling of three-dimensional fluid flow in a spiral compensator”, Fluid Dynamics Res., 37:4 (2005), 267–292 | DOI

[5] Schacht W., Vorozhtsov E. V., Numerische Modellierung einer dreidimensionalen Fluidströmung in einem Spiralenkompensator, Gasversorgung Thüringen, Erfurt, 2005

[6] Roe P., “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl

[7] Voevodin A. F., Shugrin S. M., Chislennye metody rascheta odnomernykh sistem, Nauka, Novosibirsk, 1981 | MR

[8] Merenkov A. P., Sennova E. V., Sumarokov S. V., Sidler V. G., Novitskii N. N., Stennikov V. A., Chupin V. R., Matematicheskoe modelirovanie i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnabzheniya, Nauka, Novosibirsk, 1992

[9] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper. No 85-0363, 1985

[10] Whitfield D. L., Taylor L. K., Beddhu M., Arabshahi A., “Discretized Newton-relaxation solution of the three-dimensional unsteady incompressible Navier–Stokes equations”, Frontiers of Computational Fluid Dynamics, John Wiley Sons, Chichester. New York, 1994, 575–594

[11] Sheng C., Whitfield D. L., Anderson W. K., A multiblock approach for calculating incompressible fluid flows on unstructured grids, AIAA Paper. No 97-1866, 1997

[12] Leer B. van, “Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI

[13] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer-Verl., Berlin, New York, 1999 | MR