Modification of the Schwartz method for computing multiply connected piecewise-homogeneous elastic bodies
Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 33-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2007_10_1_a3,
     author = {K. S. Bormotin and A. I. Oleinikov},
     title = {Modification of the {Schwartz} method for computing multiply connected piecewise-homogeneous elastic bodies},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/}
}
TY  - JOUR
AU  - K. S. Bormotin
AU  - A. I. Oleinikov
TI  - Modification of the Schwartz method for computing multiply connected piecewise-homogeneous elastic bodies
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2007
SP  - 33
EP  - 42
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/
LA  - ru
ID  - SJIM_2007_10_1_a3
ER  - 
%0 Journal Article
%A K. S. Bormotin
%A A. I. Oleinikov
%T Modification of the Schwartz method for computing multiply connected piecewise-homogeneous elastic bodies
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2007
%P 33-42
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/
%G ru
%F SJIM_2007_10_1_a3
K. S. Bormotin; A. I. Oleinikov. Modification of the Schwartz method for computing multiply connected piecewise-homogeneous elastic bodies. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 33-42. http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/

[1] Matsokin A. M., Nepomnyaschikh S. V., “Alterniruyuschii metod Shvartsa v podprostranstve”, Izv. vuzov. Matematika, 1985, no. 10, 61–66 | MR | Zbl

[2] Matsokin A. M., Nepomnyaschikh S. V., “O skhodimosti metoda alternirovaniya Shvartsa po podoblastyam bez naleganiya”, Metody approksimatsii i interpolyatsii, Novosibirsk, 1981, 85–97 | MR

[3] Matsokin A. M., Nepomnyaschikh S. V., “Primenenie okaimleniya pri reshenii sistem setochnykh uravnenii”, Vychislitelnye algoritmy v zadachakh matematicheskoi fiziki, Novosibirsk, 1983, 99–109

[4] Mikhlin S. G., Integralnye uravneniya i ikh prilozhenie k nekotorym problemam mekhaniki, matematicheskoi fiziki i tekhniki, Gostekhizdat, M., 1949

[5] Mikhlin S. G., “Metod posledovatelnykh priblizhenii v primenenii k bigarmonicheskoi probleme”, Tr. Seismologicheskogo in-ta AN SSSR, no. 39, 1934, 1–14 | Zbl

[6] Sobolev S., “Algorifm Shvartsa v teorii uprugosti”, Dokl. AN SSSR, 4(13):6(110) (1936), 235–238

[7] Grekov M. A., Singulyarnaya ploskaya zadacha teorii uprugosti, Izd-vo S.-Peterburg. un-ta, SPb., 2001 | MR | Zbl

[8] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[9] Oleinikov A. I., Kuzmin A. O., “Raschet napryazhennogo sostoyaniya i otsenka prochnosti rezhuschego instrumenta s tonkim pokrytiem”, Problemy prochnosti, 2003, no. 1, 27–38

[10] Raschet napryazhenii v porodnykh massivakh metodom granichnykh integralnykh uravnenii., izd. NIGRI, Krivoi Rog, 1982

[11] Sedov L. I., Mekhanika sploshnoi sredy, T. 2, Nauka, M., 1970

[12] Godunov S. K., Reshenie sistem lineinykh uravnenii, Nauka, Novosibirsk, 1980

[13] Oleinikov A. I., Bormotin K. S., “Regulyarizovannye parallelnye algoritmy rascheta uprugikh tel s tonkimi elementami struktury”, Tr. Mezhdunar. konf. po vychisl. matematike MKVM-2004, izd. IVMiMG SO RAN, Novosibirsk, 2004, 192–196, Ch. 1

[14] Oleinikov A. I., Bormotin K. S., “Effektivnaya regulyarizatsiya metoda granichnogo elementa pri modelirovanii izdelii s pokrytiyami”, Informatika i sistemy upravleniya, 2004, no. 2(8), 19–26