Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2007_10_1_a3, author = {K. S. Bormotin and A. I. Oleinikov}, title = {Modification of the {Schwartz} method for computing multiply connected piecewise-homogeneous elastic bodies}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {33--42}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/} }
TY - JOUR AU - K. S. Bormotin AU - A. I. Oleinikov TI - Modification of the Schwartz method for computing multiply connected piecewise-homogeneous elastic bodies JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2007 SP - 33 EP - 42 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/ LA - ru ID - SJIM_2007_10_1_a3 ER -
%0 Journal Article %A K. S. Bormotin %A A. I. Oleinikov %T Modification of the Schwartz method for computing multiply connected piecewise-homogeneous elastic bodies %J Sibirskij žurnal industrialʹnoj matematiki %D 2007 %P 33-42 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/ %G ru %F SJIM_2007_10_1_a3
K. S. Bormotin; A. I. Oleinikov. Modification of the Schwartz method for computing multiply connected piecewise-homogeneous elastic bodies. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 33-42. http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a3/
[1] Matsokin A. M., Nepomnyaschikh S. V., “Alterniruyuschii metod Shvartsa v podprostranstve”, Izv. vuzov. Matematika, 1985, no. 10, 61–66 | MR | Zbl
[2] Matsokin A. M., Nepomnyaschikh S. V., “O skhodimosti metoda alternirovaniya Shvartsa po podoblastyam bez naleganiya”, Metody approksimatsii i interpolyatsii, Novosibirsk, 1981, 85–97 | MR
[3] Matsokin A. M., Nepomnyaschikh S. V., “Primenenie okaimleniya pri reshenii sistem setochnykh uravnenii”, Vychislitelnye algoritmy v zadachakh matematicheskoi fiziki, Novosibirsk, 1983, 99–109
[4] Mikhlin S. G., Integralnye uravneniya i ikh prilozhenie k nekotorym problemam mekhaniki, matematicheskoi fiziki i tekhniki, Gostekhizdat, M., 1949
[5] Mikhlin S. G., “Metod posledovatelnykh priblizhenii v primenenii k bigarmonicheskoi probleme”, Tr. Seismologicheskogo in-ta AN SSSR, no. 39, 1934, 1–14 | Zbl
[6] Sobolev S., “Algorifm Shvartsa v teorii uprugosti”, Dokl. AN SSSR, 4(13):6(110) (1936), 235–238
[7] Grekov M. A., Singulyarnaya ploskaya zadacha teorii uprugosti, Izd-vo S.-Peterburg. un-ta, SPb., 2001 | MR | Zbl
[8] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969
[9] Oleinikov A. I., Kuzmin A. O., “Raschet napryazhennogo sostoyaniya i otsenka prochnosti rezhuschego instrumenta s tonkim pokrytiem”, Problemy prochnosti, 2003, no. 1, 27–38
[10] Raschet napryazhenii v porodnykh massivakh metodom granichnykh integralnykh uravnenii., izd. NIGRI, Krivoi Rog, 1982
[11] Sedov L. I., Mekhanika sploshnoi sredy, T. 2, Nauka, M., 1970
[12] Godunov S. K., Reshenie sistem lineinykh uravnenii, Nauka, Novosibirsk, 1980
[13] Oleinikov A. I., Bormotin K. S., “Regulyarizovannye parallelnye algoritmy rascheta uprugikh tel s tonkimi elementami struktury”, Tr. Mezhdunar. konf. po vychisl. matematike MKVM-2004, izd. IVMiMG SO RAN, Novosibirsk, 2004, 192–196, Ch. 1
[14] Oleinikov A. I., Bormotin K. S., “Effektivnaya regulyarizatsiya metoda granichnogo elementa pri modelirovanii izdelii s pokrytiyami”, Informatika i sistemy upravleniya, 2004, no. 2(8), 19–26