Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2007_10_1_a0, author = {G. V. Alekseev and E. A. Kalinina}, title = {Identification of the lower coefficient for the stationary convection-diffusion-reaction equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {3--16}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a0/} }
TY - JOUR AU - G. V. Alekseev AU - E. A. Kalinina TI - Identification of the lower coefficient for the stationary convection-diffusion-reaction equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2007 SP - 3 EP - 16 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a0/ LA - ru ID - SJIM_2007_10_1_a0 ER -
%0 Journal Article %A G. V. Alekseev %A E. A. Kalinina %T Identification of the lower coefficient for the stationary convection-diffusion-reaction equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2007 %P 3-16 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a0/ %G ru %F SJIM_2007_10_1_a0
G. V. Alekseev; E. A. Kalinina. Identification of the lower coefficient for the stationary convection-diffusion-reaction equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/SJIM_2007_10_1_a0/
[1] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR
[2] Belolipetskii V. M., Shokin Yu. I., Matematicheskoe modelirovanie v zadachakh zaschity okruzhayuschei sredy, Infolio, Novosibirsk, 1997
[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[4] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004
[5] Ito K., Kunisch K., “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 1997, no. 14, 995–1013 | DOI | MR | Zbl
[6] Lowe B., Rundell W., “The determination of a coefficient in an elliptic equation from average flux data”, J. Comput. Math., 70 (1996), 173–187 | DOI | MR | Zbl
[7] Tereshko D. A., “Chislennoe reshenie zadach identifikatsii parametrov primesi dlya statsionarnykh uravnenii massoperenosa”, Vych. tekhnika, 9 (2004), 92–98, Spets. vyp. Ch. 4
[8] Kalinina E. A., “Chislennoe issledovanie obratnoi ekstremalnoi zadachi identifikatsii mladshego koeffitsienta dvumernogo ellipticheskogo uravneniya”, Dalnevost. mat. zhurn., 6:1–2 (2005), 57–70
[9] Capatina A., Stavre R., “Numerical analysis of a control problem in heat conducting Navier-Stokes fluid”, Internat. J. Eng. Sci., 34:13 (1996), 1467–1476 | DOI | MR | Zbl
[10] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Dokl. RAN, 375:3 (2000), 315–319 | MR
[11] Alekseev C. V., Adomavichus E. A., “Theoretical analysis of inverse extremal problems of admixturediffus ion in viscous fluids”, J. Inverse Ill-Posed Probl., 9:5 (2001), 435–468 | MR | Zbl
[12] Alekseev G. V., Adomavichyus E. A., “Issledovanie obratnykh ekstremalnykh zadach dlya nelineinykh statsionarnykh uravnenii perenosa veschestva”, Dalnevost. mat. zhurn., 3:1 (2002), 79–92
[13] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zhurn. vychisl. matematiki i mat. fiziki, 42:3 (2002), 380–394 | MR | Zbl
[14] Alekseev G. V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl
[15] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[16] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[17] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973