A ``weak'' theorem of Phragm\'en-Lindel\"of type for the difference of solutions of the equation of gas dynamics
Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 3, pp. 90-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2006_9_3_a8,
     author = {A. V. Kochetov and V. M. Miklyukov},
     title = {A ``weak'' theorem of {Phragm\'en-Lindel\"of} type for the difference of solutions of the equation of gas dynamics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {90--101},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/}
}
TY  - JOUR
AU  - A. V. Kochetov
AU  - V. M. Miklyukov
TI  - A ``weak'' theorem of Phragm\'en-Lindel\"of type for the difference of solutions of the equation of gas dynamics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2006
SP  - 90
EP  - 101
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/
LA  - ru
ID  - SJIM_2006_9_3_a8
ER  - 
%0 Journal Article
%A A. V. Kochetov
%A V. M. Miklyukov
%T A ``weak'' theorem of Phragm\'en-Lindel\"of type for the difference of solutions of the equation of gas dynamics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2006
%P 90-101
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/
%G ru
%F SJIM_2006_9_3_a8
A. V. Kochetov; V. M. Miklyukov. A ``weak'' theorem of Phragm\'en-Lindel\"of type for the difference of solutions of the equation of gas dynamics. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 3, pp. 90-101. http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/

[1] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[2] Suvorov G. D., Semeistva ploskikh topologicheskikh otobrazhenii, Nauka, Novosibirsk, 1965 | MR

[3] Evgrafov M. A., Analiticheskie funktsii, Nauka, M., 1968 | MR | Zbl

[4] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR

[5] Alessandrini G., Nesi V., “Univalent $\sigma$-harmonic mappings”, Arch. Rational Mech. Anal., 158 (2001), 155–171 | DOI | MR | Zbl

[6] Faraco D., Beltrami operators and microstructure, Acad. dissertation. Univ. Helsinki, 2002 | Zbl

[7] Klyachin V. A., Kochetov A. V., Miklyukov V. M., Some elementary inequalities in gas dynamics equation, Preprint Univ. Helsinki; 402, Helsinki, 2004, 26 pp.

[8] Miklyukov V. M., “Ob odnom novom podkhode k teorii Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Mat. sb., 108(150) (1979), 268–289 | MR