@article{SJIM_2006_9_3_a8,
author = {A. V. Kochetov and V. M. Miklyukov},
title = {A {\textquotedblleft}weak{\textquotedblright} theorem of {Phragm\'en-Lindel\"of} type for the difference of solutions of the equation of gas dynamics},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {90--101},
year = {2006},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/}
}
TY - JOUR AU - A. V. Kochetov AU - V. M. Miklyukov TI - A “weak” theorem of Phragmén-Lindelöf type for the difference of solutions of the equation of gas dynamics JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2006 SP - 90 EP - 101 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/ LA - ru ID - SJIM_2006_9_3_a8 ER -
%0 Journal Article %A A. V. Kochetov %A V. M. Miklyukov %T A “weak” theorem of Phragmén-Lindelöf type for the difference of solutions of the equation of gas dynamics %J Sibirskij žurnal industrialʹnoj matematiki %D 2006 %P 90-101 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/ %G ru %F SJIM_2006_9_3_a8
A. V. Kochetov; V. M. Miklyukov. A “weak” theorem of Phragmén-Lindelöf type for the difference of solutions of the equation of gas dynamics. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 3, pp. 90-101. http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a8/
[1] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[2] Suvorov G. D., Semeistva ploskikh topologicheskikh otobrazhenii, Nauka, Novosibirsk, 1965 | MR
[3] Evgrafov M. A., Analiticheskie funktsii, Nauka, M., 1968 | MR | Zbl
[4] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973 | MR
[5] Alessandrini G., Nesi V., “Univalent $\sigma$-harmonic mappings”, Arch. Rational Mech. Anal., 158 (2001), 155–171 | DOI | MR | Zbl
[6] Faraco D., Beltrami operators and microstructure, Acad. dissertation. Univ. Helsinki, 2002 | Zbl
[7] Klyachin V. A., Kochetov A. V., Miklyukov V. M., Some elementary inequalities in gas dynamics equation, Preprint Univ. Helsinki; 402, Helsinki, 2004, 26 pp.
[8] Miklyukov V. M., “Ob odnom novom podkhode k teorii Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Mat. sb., 108(150) (1979), 268–289 | MR