Quasiconformal extension from curvilinear triangles
Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 3, pp. 17-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2006_9_3_a1,
     author = {V. V. Aseev},
     title = {Quasiconformal extension from curvilinear triangles},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a1/}
}
TY  - JOUR
AU  - V. V. Aseev
TI  - Quasiconformal extension from curvilinear triangles
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2006
SP  - 17
EP  - 25
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a1/
LA  - ru
ID  - SJIM_2006_9_3_a1
ER  - 
%0 Journal Article
%A V. V. Aseev
%T Quasiconformal extension from curvilinear triangles
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2006
%P 17-25
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a1/
%G ru
%F SJIM_2006_9_3_a1
V. V. Aseev. Quasiconformal extension from curvilinear triangles. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 3, pp. 17-25. http://geodesic.mathdoc.fr/item/SJIM_2006_9_3_a1/

[1] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Ch. 2, izd. NGU, Novosibirsk, 1968

[2] Seleznev V. A., Kraevaya zadacha Gazemana na rimanovykh poverkhnostyakh v klassakh kvazikonformnykh konturov i sdvigov, Dinamika sploshnoi sredy, 13, 1973 | MR

[3] Monakhov V. N., Verkhovod D. V., Semenko E. V., Kraevye zadachi dlya kvazianaliticheskikh funktsii na kompaktnykh rimanovykh poverkhnostyakh, izd. In-ta gidrodinamiki SO AN SSSR, Novosibirsk, 1990 | MR

[4] Väisälä J., “Quasi-symmetric embeddings in euclidean spaces”, Trans. Amer. Math. Soc., 264:1 (1981), 191–204 | DOI | MR | Zbl

[5] Lehto O., Virtanen K., Quasikonforme Abbildungen, Springer-Verl., Berlin, Heidelberg, New York, 1965 | MR | Zbl

[6] Rickman S., “Quasiconformally equivalent curves”, Duke Math. J., 36 (1969), 387–400 | DOI | MR | Zbl

[7] Aseev V. V., Sychev A. V., Tetenov A. V., “Mebiusovo-invariantnye metriki i obobschennye ugly v ptolemeevykh prostranstvakh”, Sib. mat. zhurn., 46:2 (2005), 243–263 | MR | Zbl

[8] Väisälä J., “Quasimöbius maps”, J. Anal. Math., 44 (1984–1985), 218–234 | DOI | MR

[9] Aseev V. V., Kvazisimmetricheskie vlozheniya i otobrazheniya, ogranichenno iskazhayuschie moduli, Dep. v VINITI 06.11.84, No 7190-84 Red. “Sib. mat. zhurn.”, Novosibirsk, 1984, 30 pp. | MR

[10] Aseev V. V., “Quasisymmetric embeddings”, J. Math. Sci. (New York), 108:3 (2002), 375–410 | DOI | MR | Zbl

[11] Aseev V. V., Sychev A. V., “Quasiconformal extension of plane quasiconformal embeddings”, Lect. Notes Math., 1351, 1988, 23–27 | MR | Zbl

[12] Aseev V. V., “Kvazikonformnoe prodolzhenie kvazimebiusovykh vlozhenii na ploskosti”, Dokl. AN SSSR, 302:3 (1988), 524–526 | MR

[13] Varisov A. K., “O kvazikonformnom prodolzhenii gomeomorfizmov ploskikh oblastei”, Gruppovye i metricheskie svoistva otobrazhenii, NGU, Novosibirsk, 1995, 116–121 | MR

[14] Varisov A. K., “Kvazikonformnoe prodolzhenie kvazimebiusovykh vlozhenii”, Dokl. RAN, 351:2 (1996), 155–157 | MR | Zbl

[15] Aseev V. V., Sychev A. V., Tetenov A. V., “O kvazikonformnom prodolzhenii s semeistva ploskikh oblastei spetsialnogo vida”, Dokl. RAN, 389:6 (2003), 727–729 | MR | Zbl

[16] Aseev V. V., Sychev A. V., Tetenov A. V., “Skleika kvazisimmetricheskikh vlozhenii v zadache o kvazikonformnom prodolzhenii”, Ukr. mat. zhurn., 56:6 (2004), 737–744 | MR | Zbl

[17] Aseev V. V., Kriterii kvazikonformnoi prodolzhimosti gomeomorfizma ploskikh oblastei, Dep. v VINITI 27.01.1987, No 629-V87. Red. “Sib. mat. zhurn.”, Novosibirsk, 1987, 14 pp.

[18] Aseev V. V., Kuzin D. G., Tetenov A. V., “Ugly mezhdu mnozhestvami i skleika kvazisimmetricheskikh otobrazhenii v metricheskikh prostranstvakh”, Izv. vuzov. Matematika, 2005, no. 10, 3–13 | MR