Approximate solution of a~boundary value problem for the Lyapunov differential equation with a~parameter
Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 2, pp. 107-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special boundary value problem is studied for the Lyapunov differential equation which is used for investigation of the asymptotic properties of solutions to systems of periodic differential equations with a parameter. An algorithm is proposed for constructing an approximate solution to this boundary value problem, and conditions on the parameter are found under which the zero solution to the system is asymptotically stable.
@article{SJIM_2006_9_2_a9,
     author = {I. I. Matveeva and E. A. Samuilova},
     title = {Approximate solution of a~boundary value problem for the {Lyapunov} differential equation with a~parameter},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a9/}
}
TY  - JOUR
AU  - I. I. Matveeva
AU  - E. A. Samuilova
TI  - Approximate solution of a~boundary value problem for the Lyapunov differential equation with a~parameter
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2006
SP  - 107
EP  - 115
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a9/
LA  - ru
ID  - SJIM_2006_9_2_a9
ER  - 
%0 Journal Article
%A I. I. Matveeva
%A E. A. Samuilova
%T Approximate solution of a~boundary value problem for the Lyapunov differential equation with a~parameter
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2006
%P 107-115
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a9/
%G ru
%F SJIM_2006_9_2_a9
I. I. Matveeva; E. A. Samuilova. Approximate solution of a~boundary value problem for the Lyapunov differential equation with a~parameter. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 2, pp. 107-115. http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a9/

[1] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[2] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., L., 1963 | MR | Zbl

[3] Uilkinson Dzh. Kh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970

[4] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauch. kniga, Novosibirsk, 1997

[5] Bulgakov A. Ya., “Effektivno vychislyaemyi parametr kachestva ustoichivosti sistem lineinykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Sib. mat. zhurn., 21:3 (1980), 32–41 | MR | Zbl

[6] Godunov S. K., Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami. T. 1: Kraevye zadachi, Izd-vo Novosib. un-ta, Novosibirsk, 1994 | MR | Zbl

[7] Demidenko G. V., Matveeva I. I., “Ob ustoichivosti reshenii lineinykh sistem s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 42:2 (2001), 332–348 | MR | Zbl

[8] Demidenko G. V., Matveeva I. I., “Ob ustoichivosti reshenii kvazilineinykh periodicheskikh sistem differentsialnykh uravnenii”, Sib. mat. zhurn., 45:6 (2004), 1271–1284 | MR | Zbl