@article{SJIM_2006_9_2_a8,
author = {D. V. Lisitsin},
title = {Criteria for the choice of the structure of a~regression model with {non-Gaussian} and dependent errors},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {90--106},
year = {2006},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a8/}
}
TY - JOUR AU - D. V. Lisitsin TI - Criteria for the choice of the structure of a regression model with non-Gaussian and dependent errors JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2006 SP - 90 EP - 106 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a8/ LA - ru ID - SJIM_2006_9_2_a8 ER -
D. V. Lisitsin. Criteria for the choice of the structure of a regression model with non-Gaussian and dependent errors. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 2, pp. 90-106. http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a8/
[1] Ronchetti E., Staudte R. G., “A robust version of Mallow's $C_p$”, J. Amer. Statist. Assoc., 89 (1994), 550–559 | DOI | MR | Zbl
[2] Ronchetti E., “Robustness aspects of model choice”, Statist. Sinica, 7 (1997), 327–338 | MR | Zbl
[3] Sovremennye metody identifikatsii, Mir, M., 1983
[4] Lisitsin D. V., “Adaptivnye metody postroeniya mnogootklikovykh regressionnykh modelei”, Tr. 5 Mezhdunar. konf. “Aktualnye problemy elektronnogo priborostroeniya” APEP-2000, t. 3, Novosibirsk, 2000, 14–18
[5] Cavanaugh J. E., “A large-sample model selection criterion based on Kullback's symmetric divergence”, Statist. Probab. Lett., 44 (1999), 333–344 | DOI | MR
[6] F. Khampel, E. Ronchetti, P. Rasseu, V. Shtael (red.), Robastnost v statistike. Podkhod na osnove funktsii vliyaniya, Mir, M., 1989 | MR | Zbl
[7] Cantoni E., Mills Flemming J., Ronchetti E., “Variable selection for marginal longitudinal generalized linear models”, Biometrics, 61 (2005), 507–514 | DOI | MR | Zbl
[8] Ronchetti E., Field C. A., Blanchard W., “Robust linear model selection by cross-validation”, J. Amer. Statist. Assoc., 92 (1997), 1017–1023 | DOI | MR | Zbl
[9] Lisitsin D. V., “Ustoichivye metody otsenivaniya parametrov i vybora struktury mnogo- otklikovoi lineino parametrizovannoi modeli”, Nauch. vestnik NGTU, 2001, no. 2(11), 53–66
[10] Ivakhnenko A. G., Stepashko V. S., Pomekhoustoichivost modelirovaniya, Nauk. dumka, Kiev, 1985
[11] Shao J., “Linear model selection by cross-validation”, J. Amer. Statist. Assoc., 88 (1993), 486–494 | DOI | MR | Zbl
[12] Lisitsin D. V., “Vybor struktury regressionnoi modeli pri multiplikativnoi parametrizatsii kovariatsionnoi matritsy oshibok”, 4 Sib. kongress po prikladnoi i industrialnoi matematike, Tez. dokl. Ch. 4, Izd-vo In-ta matematiki, Novosibirsk, 2000, 33–34
[13] Shurygin A. M., “Otsenki parametrov normalnogo raspredeleniya s eksponentsialnym vzveshivaniem nablyudenii: asimptoticheskaya teoriya”, Algoritmicheskoe i programmnoe obespechenie prikladnogo statisticheskogo analiza, Nauka, M., 1980, 241–259 | MR
[14] Siotani M., Hayakawa T., Fujikoshi Y., Modern Multivariate Statistical Analysis: A Graduate Course and Handbook, Amer. Sci. Press, Columbus, Ohio, 1985 | MR | Zbl
[15] Novitskii P. V., Zograf I. A., Otsenka pogreshnostei rezultatov izmerenii, Energoatomizdat, L., 1991
[16] Lisitsin D. V., “Konstruirovanie robastnykh otsenok parametrov regressii pri neodnorodnykh nablyudeniyakh”, Nauch. vestnik NGTU, 2004, no. 3(18), 43–55
[17] Shurygin A. M., Prikladnaya stokhastika: robastnost, otsenivanie, prognoz, Finansy i statistika, M., 2000 | MR | Zbl
[18] Lisitsin D. V., “Planirovanie eksperimenta pri robastnom otsenivanii parametrov regressionnoi modeli po neodnorodnym nablyudeniyam”, Sib. zhurn. industr. matematiki, 7:4(20) (2004), 92–106 | MR | Zbl
[19] Lisitsin D. V., Popov A. A., “Konstruirovanie kriteriev selektsii mnogomernykh regressionnykh modelei”, Sb. nauch. trudov NGTU, no. 1, 1996, 13–20
[20] Lisitsin D. V., “Otsenivanie parametrov mnogootklikovoi regressii pri multiplikativnoi parametrizatsii kovariatsionnoi matritsy oshibok”, Nauch. vestnik NGTU, 2000, no. 1(8), 12–22