Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval
Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 2, pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties are studied of a degenerate elliptic operator $P$ defined on the interval $(0,1)$; namely, the resolvent of $P$ is estimated. The completeness is investigated of the system of vector functions of $P$, and the summability is studied by the Abel method with parentheses of the Fourier series of elements in the corresponding Hilbert spaces with respect to systems of the root vector functions of $P$. An asymtotic formula is obtained for the distribution of the eigenvalues of $P$ that distinguishes the principal term of the asymptotics.
@article{SJIM_2006_9_2_a3,
     author = {M. G. Gadoev},
     title = {Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a3/}
}
TY  - JOUR
AU  - M. G. Gadoev
TI  - Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2006
SP  - 31
EP  - 43
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a3/
LA  - ru
ID  - SJIM_2006_9_2_a3
ER  - 
%0 Journal Article
%A M. G. Gadoev
%T Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2006
%P 31-43
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a3/
%G ru
%F SJIM_2006_9_2_a3
M. G. Gadoev. Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/SJIM_2006_9_2_a3/

[1] Boimatov K. Kh., “Teoremy razdelimosti, vesovye prostranstva i ikh prilozheniya”, Tr. MIAN SSSR, 170, 1984, 37–76 | MR | Zbl

[2] Boimatov K. Kh., Kostyuchenko A. G., “Raspredelenie sobstvennykh znachenii ellipticheskikh operatorov vo vsem prostranstve”, Tr. seminara im. I. G. Petrovskogo, no. 2, Izd-vo MGU, M., 1976, 113–143 | MR

[3] Boimatov K. Kh., Kostyuchenko A. G., “Spektralnaya asimptotika nesamosopryazhennykh ellipticheskikh sistem”, Mat. sb., 181:12 (1990), 1678–1693

[4] Boimatov K. Kh., Kostyuchenko A. G., “Raspredelenie sobstvennykh znachenii nesamosopryazhennykh differentsialnykh operatorov vtorogo poryadka”, Vestnik MGU, 1990, no. 3, 24–31 | MR | Zbl

[5] Gadoev M. G., “Spektralnaya asimptotika nesamosopryazhennykh ellipticheskikh sistem vtorogo poryadka, slabovyrozhdayuschikhsya na granitse oblasti”, Dokl. AN Tadzhikistana, 42:3 (1999), 54–59

[6] Sameripour A., Ahooghalanderi A., “On the spectral properties of degenerate non-selfadjoint elliptic systems of differential operators”, Bull. Iran. Math. Soc., 29:2 (2003), 13–26 | MR | Zbl

[7] “Gadoev M. G.”, Materialy nauch.-prakt. konf., posvyasch. 50-letiyu almazodobyvayuschei promyshlennosti i g. Mirnogo, Mirnyi, 2005, 151–155

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Boimatov K. Kh., “Spektralnaya asimptotika differentsialnykh i psevdodifferentsialnykh operatorov, II”, Tr. seminara im. I. G. Petrovskogo, no. 10, Izd-vo MGU, M., 1984, 78–106 | MR

[10] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[11] Agranovich M. S., “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, izd. VINITI, M., 1990, 5–129 | MR