Algebraic classification of physical structures with a~zero. II.~Topological aspects
Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 1, pp. 135-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2006_9_1_a11,
     author = {I. A. Firdman},
     title = {Algebraic classification of physical structures with a~zero. {II.~Topological} aspects},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {135--146},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a11/}
}
TY  - JOUR
AU  - I. A. Firdman
TI  - Algebraic classification of physical structures with a~zero. II.~Topological aspects
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2006
SP  - 135
EP  - 146
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a11/
LA  - ru
ID  - SJIM_2006_9_1_a11
ER  - 
%0 Journal Article
%A I. A. Firdman
%T Algebraic classification of physical structures with a~zero. II.~Topological aspects
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2006
%P 135-146
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a11/
%G ru
%F SJIM_2006_9_1_a11
I. A. Firdman. Algebraic classification of physical structures with a~zero. II.~Topological aspects. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 1, pp. 135-146. http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a11/

[1] Firdman I. A., “Algebraicheskaya klassifikatsiya fizicheskikh struktur s nulem, I”, Sib. zhurn. industr. matematiki, 8:4(24) (2005), 131–148 | MR | Zbl

[2] Mikhailichenko G. G., “Reshenie funktsionalnykh uravnenii v teorii fizicheskikh struktur”, Dokl. AN SSSR, 206:5 (1972), 1056–1058

[3] Ionin V. K., “Abstraktnye gruppy kak fizicheskie struktury”, Sistemologiya i metodologicheskie problemy informatsionno-logicheskikh sistem, Vychislitelnye sistemy, 135, Novosibirsk, 1990, 40–43 | MR | Zbl

[4] Ionin V. K., “K opredeleniyu fizicheskikh struktur”, Tr. Instituta matematiki, 21, Novosibirsk, 1992, 42–51 | MR | Zbl

[5] Borodin A. N., “Gruda i gruppa kak fizicheskaya struktura”, v kn.: Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh struktur, izd. Barnaul. gos. ped. un-ta, Barnaul, 2003, 195–203

[6] Litvintsev A. A., “Kompleksnaya fizicheskaya struktura ranga (2,2)”, v kn.: Mikhailichenko G. G., Matematicheskii apparat teorii fizicheskikh struktur, izd. GAGU, Gorno-Altaisk, 1997, 133–144

[7] Litvintsev A. A., “Kompleksnaya fizicheskaya struktura ranga (3,2)”, Materialy 35 Mezhdunar. stud. konf., izd. NGU, Novosibirsk, 1997, 62–63

[8] Vladimirov Yu. S., Relyatsionnaya teoriya prostranstva-vremeni i vzaimodeistvii. Ch. 1. Teoriya sistem otnoshenii, , Izd-vo MGU, M., 1996 http://www.chronos.msu.ru/ rindex.html

[9] Vladimirov Yu. S., Relyatsionnaya teoriya prostranstva-vremeni i vzaimodeistvii. Ch. 2. Teoriya fizicheskikh vzaimodeistvii, Izd-vo MGU, M., 1998; http://www.chronos.msu.ru/rindex.html

[10] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[11] Burbaki N., Algebra. Moduli, koltsa, formy, Fizmatgiz, M., 1966 | MR

[12] Heyting A., “Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplication”, Math. Ann., 1927, no. 98, 465–490 | MR | Zbl