Solvability of a~boundary value problem for a~stationary model of the magnetohydrodynamics of a~viscous heat-conducting fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 1, pp. 13-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem is studied for a stationary model of the magnetic hydrodynamics of a viscous heat-conducting fluid under nonhomogeneous boundary conditions on the velocity, electromagnetic field, and temperature. The model consists of the Navier-Stokes equations, the Maxwell equations, the generalized Ohm law, and the convection-diffusion equation for the temperature which are connected nonlinearly with each other. Sufficient conditions on the initial data are established that guarantee the global solvability of the problem under consideration and the local uniqueness of its solution. The properties are studied of the linear operator obtained by linearizing the operator of the original boundary value problem.
@article{SJIM_2006_9_1_a1,
     author = {G. V. Alekseev},
     title = {Solvability of a~boundary value problem for a~stationary model of the magnetohydrodynamics of a~viscous heat-conducting fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {13--27},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a1/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - Solvability of a~boundary value problem for a~stationary model of the magnetohydrodynamics of a~viscous heat-conducting fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2006
SP  - 13
EP  - 27
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a1/
LA  - ru
ID  - SJIM_2006_9_1_a1
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T Solvability of a~boundary value problem for a~stationary model of the magnetohydrodynamics of a~viscous heat-conducting fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2006
%P 13-27
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a1/
%G ru
%F SJIM_2006_9_1_a1
G. V. Alekseev. Solvability of a~boundary value problem for a~stationary model of the magnetohydrodynamics of a~viscous heat-conducting fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 9 (2006) no. 1, pp. 13-27. http://geodesic.mathdoc.fr/item/SJIM_2006_9_1_a1/

[1] Landau L. D. Lifshits E. M., Elektrodinamika sploshnykh sred. Teoreticheskaya fizika, T. 8, Nauka, M., 1982 | MR

[2] Verte L. A., Magnitnaya gidrodinamika v metallurgii, Nauka, M., 1975

[3] Gelfgat Yu. M., Lielausis O. A., Scherbinin E. V., Zhidkii metall pod vozdeistviem elektromagnitnykh sil, Zinatne, Riga, 1976

[4] Glukhikh V. A., Tananaev A. V., Kirillov I. R., Magnitnaya gidrodinamika v yadernoi energetike, Nauka, M., 1987

[5] Lavrentev I. V., “Zhidkometallicheskie sistemy termoyadernykh reaktorov-tokomakov”, Magnit. gidrodinamika, 1990, no. 2, 105–124 | MR

[6] Shashkov Yu. N., Vyraschivanie monokristallov metodom vytyagivaniya, Nauka, M., 1982

[7] Muller G., Convection and Inhomogeneties in Crystal Growth from the Melt, Springer-Verl., Berlin, Heidelberg, 1988

[8] Meir A. J., “Schmidt P. G.”, Nonlinear Anal., 47 (2001), 3281–3294 | DOI | MR | Zbl

[9] Gunzburger M. D., Meir A. J., Peterson J. S., “On the existence, uniqueness and finite element approximation of solution of the equations of stationary, incompressible magnetohydrodynamics”, Math. Comp., 56:194 (1991), 523–563 | DOI | MR | Zbl

[10] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. RAN, 395:3 (2004), 322–325 | MR

[11] Alekseev G. V., “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sib. mat. zhurn., 45:2 (2004), 243–262 | MR

[12] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Prikl. mekhanika i tekhn. fizika, 44:6 (2003), 170–179 | MR | Zbl

[13] Alekseev G. V., “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl

[14] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Dokl. RAN, 375:3 (2000), 315–319 | MR

[15] Alekseev G. V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[16] Girault V., Raviart P. A., Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verl., Berlin, 1986 | MR | Zbl

[17] Valli A., Orthogonal decompositions of $L^2(\Omega)^3$, Preprint Univ. of Trento UTM 493, Trento, 1996

[18] Alekseev G. V., Teoreticheskii analiz zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti, Preprint IPM DVO RAN, No 1, Vladivostok, 2004, 80 pp.