The infima of functionals of a special kind on a compact convex set
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 4, pp. 91-99
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the infimum of the ratio of a concave functional and a convex functional is attained at the extreme points of a compact convex set in a normed linear space. A criterion for the membership of a given element in the set of extreme points is proposed and the existence of a strongly convex functional on a compact set is shown.
@article{SJIM_2005_8_4_a7,
author = {V. Ya. Prudnikov},
title = {The infima of functionals of a~special kind on a~compact convex set},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {91--99},
year = {2005},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a7/}
}
V. Ya. Prudnikov. The infima of functionals of a special kind on a compact convex set. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 4, pp. 91-99. http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a7/
[1] Gavurin M. K., Malozemov V. N., Ekstremalnye zadachi s lineinymi ogranicheniyami, Izd-vo LGU, L., 1984 | Zbl
[2] Pshenichnyi B. N., Neobkhodimye usloviya ekstremuma, Nauka, M., 1982 | MR
[3] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR
[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[5] Sadovnichii V. A., Teoriya operatorov, Vysshaya shkola, M., 1999
[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR