The infima of functionals of a~special kind on a~compact convex set
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 4, pp. 91-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the infimum of the ratio of a concave functional and a convex functional is attained at the extreme points of a compact convex set in a normed linear space. A criterion for the membership of a given element in the set of extreme points is proposed and the existence of a strongly convex functional on a compact set is shown.
@article{SJIM_2005_8_4_a7,
     author = {V. Ya. Prudnikov},
     title = {The infima of functionals of a~special kind on a~compact convex set},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a7/}
}
TY  - JOUR
AU  - V. Ya. Prudnikov
TI  - The infima of functionals of a~special kind on a~compact convex set
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 91
EP  - 99
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a7/
LA  - ru
ID  - SJIM_2005_8_4_a7
ER  - 
%0 Journal Article
%A V. Ya. Prudnikov
%T The infima of functionals of a~special kind on a~compact convex set
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 91-99
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a7/
%G ru
%F SJIM_2005_8_4_a7
V. Ya. Prudnikov. The infima of functionals of a~special kind on a~compact convex set. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 4, pp. 91-99. http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a7/

[1] Gavurin M. K., Malozemov V. N., Ekstremalnye zadachi s lineinymi ogranicheniyami, Izd-vo LGU, L., 1984 | Zbl

[2] Pshenichnyi B. N., Neobkhodimye usloviya ekstremuma, Nauka, M., 1982 | MR

[3] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[5] Sadovnichii V. A., Teoriya operatorov, Vysshaya shkola, M., 1999

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR