A numerical method for a~system of equations with a~small parameter and a~point source on an infinite interval
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 4, pp. 149-157

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for solving a boundary-value problem on an infinite interval is considered for a linear system of second-order ordinary differential equations with a small parameter at the highest derivatives and a point source. The question is addressed of reduction of this problem to a finite interval. A mesh, condensing in the boundary layer, is used for numerical solution of a system of singularly perturbed equations on a finite interval.
@article{SJIM_2005_8_4_a11,
     author = {O. V. Kharina},
     title = {A numerical method for a~system of equations with a~small parameter and a~point source on an infinite interval},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a11/}
}
TY  - JOUR
AU  - O. V. Kharina
TI  - A numerical method for a~system of equations with a~small parameter and a~point source on an infinite interval
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 149
EP  - 157
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a11/
LA  - ru
ID  - SJIM_2005_8_4_a11
ER  - 
%0 Journal Article
%A O. V. Kharina
%T A numerical method for a~system of equations with a~small parameter and a~point source on an infinite interval
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 149-157
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a11/
%G ru
%F SJIM_2005_8_4_a11
O. V. Kharina. A numerical method for a~system of equations with a~small parameter and a~point source on an infinite interval. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 4, pp. 149-157. http://geodesic.mathdoc.fr/item/SJIM_2005_8_4_a11/