Linear stability of a system of Gauss vortices
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 3, pp. 8-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability problems are studied of the rigid body rotation of a regular polygonal system of pointwise and Gauss vortices. A stability criterion is obtained for a system of Gauss vortices which generalizes an available criterion for stability of the rigid body rotation of a system of pointwise vortices. The influence of dispersion of the vorticity distribution on stability of rigid body rotation is studied. It is shown, that there is some finite value of dispersion whose achievement yields the stabilization of known unstable perturbations.
@article{SJIM_2005_8_3_a1,
     author = {I. G. Bord and D. F. Kranchev},
     title = {Linear stability of a system of {Gauss} vortices},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {8--17},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a1/}
}
TY  - JOUR
AU  - I. G. Bord
AU  - D. F. Kranchev
TI  - Linear stability of a system of Gauss vortices
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 8
EP  - 17
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a1/
LA  - ru
ID  - SJIM_2005_8_3_a1
ER  - 
%0 Journal Article
%A I. G. Bord
%A D. F. Kranchev
%T Linear stability of a system of Gauss vortices
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 8-17
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a1/
%G ru
%F SJIM_2005_8_3_a1
I. G. Bord; D. F. Kranchev. Linear stability of a system of Gauss vortices. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 3, pp. 8-17. http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a1/

[1] Havelock T. H., “The stability of motion of rectalinear vortices in ring formation”, Philos. Magazin and J. Sci., 11:70 (1931), 617–633 | Zbl

[2] Rudyak V. Ya., Bord E. G. Kranchev D. F., “Stokhasticheskie svoistva sistemy tochechnykh vikhrei”, Pisma v Zhurn. teor. fiziki, 30:6 (2004), 20–24

[3] Rudyak V. Ya., Bord E. G. Kranchev D. F., “Dinamicheskii khaos v poligonalnoi sisteme tochechnykh vikhrei”, Dokl. AN vyssh. shkoly, 2004, no. 2(3), 48–57 | MR

[4] Veretentsev A. N., Rudyak V. Ya., Yanenko N. N., “O postroenii diskretnykh vikhrevykh modelei techenii idealnoi neszhimaemoi zhidkosti”, Zhurn. vychisl. matematiki i mat. fiziki, 26:1 (1986), 103–113 | MR

[5] Rudyak V. Ya., Veretentsev A. N., “O protsessakh obrazovaniya i evolyutsii vikhrevykh struktur v sdvigovykh sloyakh”, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1987, no. 1, 31–37 | MR

[6] Veretentsev A. N., Kuibin P. A., Rudyak V. Ya., “Modelirovanie formirovaniya vikhrya na ostroi kromke polubeskonechnoi plastiny”, Izv. SO AN SSSR, 2:7 (1988), 21–25

[7] Kuibin P. A., Rudyak V. Ya., “Razvitie neustoichivosti v slede za plastinoi, razmeschennoi parallelno potoku”, Izv. RAN. Mekhanika zhidkosti i gaza, 1992, no. 1, 26–32 | Zbl

[8] Rudyak V. Ya., Savchenko S. O., “O razvitii neustoichivosti v koltsevykh sdvigovykh sloyakh”, Dokl. SO AN vyssh. shkoly, 2002, no. 2(6), 42–51 | MR

[9] Kurakin L. G., Yudovich V. I., “Ustoichivost statsionarnogo vrascheniya pravilnogo vikhrevogo mnogougolnika”, Fundamentalnye i prikladnye problemy teorii vikhrei, Izhevsk, 2003, 238–299 | MR