On the theory of realization of strong differential models.~II
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 46-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The categories of the vocabulary of the a posteriori mathematical modeling of dynamical systems are formalized which enable us to apply the conventional approach to studying the existence of strong irrefutable $(A,B)$-models by formulating some assertions about such properties with a unified system of notions and terms.
@article{SJIM_2005_8_2_a5,
     author = {A. V. Daneev and A. V. Lakeev and V. A. Rusanov},
     title = {On the theory of realization of strong differential {models.~II}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {46--56},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a5/}
}
TY  - JOUR
AU  - A. V. Daneev
AU  - A. V. Lakeev
AU  - V. A. Rusanov
TI  - On the theory of realization of strong differential models.~II
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 46
EP  - 56
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a5/
LA  - ru
ID  - SJIM_2005_8_2_a5
ER  - 
%0 Journal Article
%A A. V. Daneev
%A A. V. Lakeev
%A V. A. Rusanov
%T On the theory of realization of strong differential models.~II
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 46-56
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a5/
%G ru
%F SJIM_2005_8_2_a5
A. V. Daneev; A. V. Lakeev; V. A. Rusanov. On the theory of realization of strong differential models.~II. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 46-56. http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a5/

[1] Daneev A. V., Rusanov V. A., Rusanov M. V., “K teorii realizatsii silnykh differentsialnykh modelei, I”, Sib. zhurn. industr. matematiki, 8:1(21) (2005), 53–63 | MR

[2] Daneev A. V., Rusanov V. A., “Ob odnoi teoreme suschestvovaniya silnoi modeli”, Avtomatika i telemekhanika, 1995, no. 8, 64–73 | MR | Zbl

[3] Daneev A. V., Rusanov V. A., “Geometricheskie kharakteristiki svoistv suschestvovaniya konechnomernykh (A,B)-modelei v zadachakh strukturno-parametricheskoi identifikatsii”, Avtomatika i telemekhanika, 1999, no. 1, 3–8 | MR | Zbl

[4] Daneev A. V., Rusanov V. A., “Poryadkovye kharakteristiki svoistv suschestvovaniya silnykh lineinykh konechnomernykh differentsialnykh modelei”, Differents. uravneniya, 35:1 (1999), 43–50 | MR | Zbl

[5] Daneev A. V., Rusanov V. A., “Ob odnom klasse silnykh differentsialnykh modelei nad schetnym mnozhestvom dinamicheskikh protsessov konechnogo kharaktera”, Izv. vuzov. Matematika, 2000, no. 2, 32–40 | MR | Zbl

[6] Varga Dzh., Optimalnye upravleniya differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[7] Daneev A. V., Rusanov V. A., “K aksiomaticheskoi teorii identifikatsii dinamicheskikh sistem. II: Identifikatsiya lineinykh sistem”, Avtomatika i telemekhanika, 1994, no. 9, 120–133 | MR | Zbl

[8] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[9] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[10] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[11] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR