Application of cubic splines for the analytic representation of a closed contour defined by a table of coordinates
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 26-31
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve the problem of the analytic representation of a closed contour defined by a table of coordinates and by additional conditions that define the asymptotics of the contour near the endpoints. The equation of the contour is represented in the form of the product of two functions, one of which takes into account the given asymptotics of the contour and the other function is determined by the method of local approximation by cubic splines. The theoretical error of the approximation agrees with the results of test computations.
@article{SJIM_2005_8_2_a3,
author = {D. N. Gorelov and D. G. Redreev},
title = {Application of cubic splines for the analytic representation of a~closed contour defined by a~table of coordinates},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {26--31},
year = {2005},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a3/}
}
TY - JOUR AU - D. N. Gorelov AU - D. G. Redreev TI - Application of cubic splines for the analytic representation of a closed contour defined by a table of coordinates JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2005 SP - 26 EP - 31 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a3/ LA - ru ID - SJIM_2005_8_2_a3 ER -
%0 Journal Article %A D. N. Gorelov %A D. G. Redreev %T Application of cubic splines for the analytic representation of a closed contour defined by a table of coordinates %J Sibirskij žurnal industrialʹnoj matematiki %D 2005 %P 26-31 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a3/ %G ru %F SJIM_2005_8_2_a3
D. N. Gorelov; D. G. Redreev. Application of cubic splines for the analytic representation of a closed contour defined by a table of coordinates. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 26-31. http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a3/
[1] Karafoli E., Aerodinamika kryla samoleta, Izd-vo AN SSSR, M., 1956
[2] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl
[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[4] Grebennikov A. I., Metody splainov i reshenie nekorrektnykh zadach teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1983 | MR | Zbl
[5] Zavyalov Yu. S., Leus V. A., Skorospelov V. A., Splainy v inzhenernoi geometrii, Mashinostroenie, M., 1985 | MR
[6] Rozhenko A. I., Abstraktnaya teoriya splainov, Ucheb. posobie, Izd. tsentr NGU, Novosibirsk, 1999
[7] Miroshnichenko V. L., “Ob interpolyatsii i approksimatsii splainami”, Vychislitelnye sistemy, 1983, no. 100, 83–100 | MR | Zbl