Subgrid modeling of filtration and dispersion in a~fractal porous medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 124-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations are obtained for effective coefficients of correlated random fields of permeability and porosity in a fractal porous medium. The fields have log-normal distributions. The refined perturbation theory is formulated that uses some ideas of the Wilson renormalization group. The theoretical results are compared with the results of a direct numerical modeling and the results of the conventional perturbation theory. The advantages of the refined perturbation theory over the conventional perturbation theory are demonstrated.
@article{SJIM_2005_8_2_a11,
     author = {G. A. Kuz'min and O. N. Soboleva},
     title = {Subgrid modeling of filtration and dispersion in a~fractal porous medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {124--134},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a11/}
}
TY  - JOUR
AU  - G. A. Kuz'min
AU  - O. N. Soboleva
TI  - Subgrid modeling of filtration and dispersion in a~fractal porous medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 124
EP  - 134
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a11/
LA  - ru
ID  - SJIM_2005_8_2_a11
ER  - 
%0 Journal Article
%A G. A. Kuz'min
%A O. N. Soboleva
%T Subgrid modeling of filtration and dispersion in a~fractal porous medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 124-134
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a11/
%G ru
%F SJIM_2005_8_2_a11
G. A. Kuz'min; O. N. Soboleva. Subgrid modeling of filtration and dispersion in a~fractal porous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 124-134. http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a11/

[1] Shvidler M. I., Statisticheskaya gidrodinamika poristykh sred, Nedra, M., 1985

[2] Kuzmin G. A., Soboleva O. N., “Modelirovanie filtratsii v poristykh avtomodelnykh sredakh”, Prikl. mekhanika i teor. fizika, 43:4 (2002), 115–126 | MR

[3] Kuzmin G. A., Soboleva O. N., “Modelirovanie filtratsii i vytesneniya zhidkosti v poristykh avtomodelnykh sredakh”, Fiz. mezomekhanika, 5:5 (2002), 119–123 | MR

[4] Wilson K. G., Kogut J., “The renormalization group and the $\epsilon$-expansion”, Physics Reports, 12C(2) (1974), 75–199 | DOI

[5] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[6] Kolmogorov A. N., “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number”, J. Fluid Mech., 13 (1962), 82–85 | DOI | MR | Zbl

[7] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973

[8] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, T. 1, Nauka, M., 1965

[9] Ogorodnikov V. A., Prigarin S. M., Numerical Modeling of Random Processes and Fields: Algorithms and Applications, Kluwer, Utrecht, 1996 | MR

[10] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR