Stabilization of nonautonomous potential systems by forces of another structure
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 116-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is considered of stabilizing a nonautonomous system given potential forces by adding some dissipative, gyroscopic, and nonconservative positional forces. The stabilizability domain is found for the relative equilibrium of a satellite in the circular orbit.
@article{SJIM_2005_8_2_a10,
     author = {A. A. Kosov},
     title = {Stabilization of nonautonomous potential systems by forces of another structure},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {116--123},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a10/}
}
TY  - JOUR
AU  - A. A. Kosov
TI  - Stabilization of nonautonomous potential systems by forces of another structure
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 116
EP  - 123
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a10/
LA  - ru
ID  - SJIM_2005_8_2_a10
ER  - 
%0 Journal Article
%A A. A. Kosov
%T Stabilization of nonautonomous potential systems by forces of another structure
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 116-123
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a10/
%G ru
%F SJIM_2005_8_2_a10
A. A. Kosov. Stabilization of nonautonomous potential systems by forces of another structure. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 2, pp. 116-123. http://geodesic.mathdoc.fr/item/SJIM_2005_8_2_a10/

[1] Merkin D. R., Giroskopicheskie sistemy, Nauka, M., 1974 | Zbl

[2] Metelitsin I. I., “K voprosu o giroskopicheskoi stabilizatsii”, Dokl. AN SSSR, 86:1 (1952), 31–34

[3] Peshekhonov V. G., “Giroskopy nachala XXI veka”, Giroskopiya i navigatsiya, 2003, no. 4(43), 5–18

[4] Merkin D. R., “O metode i teoremakh I. I. Metelitsina”, Prikladnaya matematika i mekhanika, 65:3 (2001), 536–540 | MR | Zbl

[5] Zhbanov Yu. K.,Zhuravlev V. F., “K voprosu o teoremakh I. I. Metelitsina”, Prikladnaya matematika i mekhanika, 65:3 (2001), 540–543 | MR

[6] Klim V., Seiranyan A. P., “Neravenstvo Metelitsina i kriterii ustoichivosti mekhanicheskikh sistem”, Prikladnaya matematika i mekhanika, 68:2 (2004), 225–233 | MR | Zbl

[7] Koshlyakov V. N., “O perekhode k uravneniyam pretsessionnoi teorii v nekonservativnykh giroskopicheskikh sistemakh”, Mekhanika tverdogo tela, 2003, no. 4, 43–51 | MR

[8] Ivanov A. P., “Ob ustoichivosti mekhanicheskikh sistem s pozitsionnymi nekonservativnymi silami”, Prikladnaya matematika i mekhanika, 67:5 (2003), 707–712 | MR | Zbl

[9] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[10] Lakhadanov V. M., “O vliyanii struktury sil na ustoichivost dvizheniya”, Prikladnaya matematika i mekhanika, 38:2 (1974), 246–253 | MR | Zbl

[11] Lakhadanov V. M., “O stabilizatsii potentsialnykh sistem”, Prikladnaya matematika i mekhanika, 39:1 (1975), 53–58 | MR

[12] Goncharenko V. I., “O stabilizatsii dvizheniya lineinykh sistem”, Prikladnaya mekhanika, 27:5 (1991), 107–110 | MR | Zbl

[13] Merkin D. R., Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1987 | MR | Zbl

[14] Beletskii V. V., Dvizhenie sputnika otnositelno tsentra mass v gravitatsionnom pole, Izd-vo MGU, M., 1975

[15] Galperin E. A., Krasovskii N. N., “O stabilizatsii ustanovivshikhsya dvizhenii nelineinykh upravlyaemykh sistem”, Prikladnaya matematika i mekhanika, 27:6 (1963), 988–1004 | MR

[16] Albrekht E. G., Mironova S. B., “Ob optimalnoi stabilizatsii v kriticheskom sluchae odnogo nulevogo kornya”, Prikladnaya matematika i mekhanika, 61:5 (1997), 732–738 | MR