Cracks in piezoelectric and electroconductive bodies
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 70-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Singularities are studied of the elastic and electric fields near a tip of a crack on the interface of two piezoelectric bodies. An analog of the Griffith formula is obtained for the increment of the potential energy of deformation due to development of a rectilinear crack. The external electrical forces result in the decrease of the energy release rate which explains an experimentally-known possibility of controlling the fracture process by some additional electric fields.
@article{SJIM_2005_8_1_a8,
     author = {A. A. Kulikov and S. A. Nazarov},
     title = {Cracks in piezoelectric and electroconductive bodies},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--87},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a8/}
}
TY  - JOUR
AU  - A. A. Kulikov
AU  - S. A. Nazarov
TI  - Cracks in piezoelectric and electroconductive bodies
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 70
EP  - 87
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a8/
LA  - ru
ID  - SJIM_2005_8_1_a8
ER  - 
%0 Journal Article
%A A. A. Kulikov
%A S. A. Nazarov
%T Cracks in piezoelectric and electroconductive bodies
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 70-87
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a8/
%G ru
%F SJIM_2005_8_1_a8
A. A. Kulikov; S. A. Nazarov. Cracks in piezoelectric and electroconductive bodies. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 70-87. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a8/

[1] Nazarov S. A., “Vesovye funktsii i invariantnye integraly”, Vychisl. mekhanika deformiruemogo tverdogo tela, 1990, no. 1, 17–31

[2] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl

[3] Nazarov S. A., “Treschina na styke anizotropnykh tel. Singulyarnosti napryazhenii i invariantnye integraly”, Prikl. matematika i mekhanika, 62:3\ (1998), 489–502 | MR

[4] Dundurs J., “Effect of elastic constants on stress in a composite under plane deformations”, J. Compos. Mater., 1:3 (1967), 310–322

[5] Duduchava R., Wendland W. L., “The Wiener-Hopf method for systems of pseudodifferential equationswith an application to crack problems”, Integral Equations Operator Theory, 23:3 (1995), 294–335 | DOI | MR | Zbl

[6] Costabel M., Dauge M., “Crack singularities for general elliptic systems”, Math. Nachr., 235 (2002), 29–49 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Parton V. Z., Kudryavtsev B. A., Elektrouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988

[8] Nazarov S. A., “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy mat. analiza, no. 25, Nauch. kniga, Novosibirsk, 2003, 99–188

[9] Mazya V. G., Nazarov S. A., “Asimptotika integralov energii pri malykh vozmuscheniyakh granitsy vblizi uglovykh i konicheskikh tochek”, Tr. mosk. mat. o-va, 50, 1987, 79–129 | MR

[10] Sokolovski Ya., Khludnev A. M., “O proizvodnoi funktsionala energii po dline treschiny v zadachakh teorii uprugosti”, Prikl. matematika i mekhanika, 64:3 (2000), 467–475 | Zbl

[11] Landau L. D., Livshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1992

[12] Grinchenko V. T., Ulitko A. F., Shulga N. A., Mekhanika svyaznykh polei v elementakh konstruktsii, Nauk. dumka, Kiev, 1989 | Zbl

[13] Nečas J., Les Méthodes in Théorie des Équations Elliptiques, Masson-Acad., Paris, Prague, 1967

[14] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Uspekhi mat. nauk, 43:5 (1988), 55–98

[15] Nazarov S. A., “Vesovye neravenstva Korna na paraboloidalnykh oblastyakh”, Mat. zametki, 62:5 (1997), 751–765 ; Мат. заметки, 63:4 (1998), 640 | MR | Zbl

[16] Nazarov S. A., Slutskii A. S., “Printsip Sen-Venana dlya paraboloidalnykh uprugikh tel”, Problemy mat. analiza, no. 18, Izd-vo SPbGU, SPb., 1999, 133–180

[17] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. mosk. mat. o-va, 16, 1967, 209–292

[18] Nazarov S. A., Plamenevsky B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin; New York, 1994 | MR

[19] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[20] Nazarov S. A., Plamenevskii B. A., “Obobschennaya formula Grina dlya ellipticheskikh zadach v oblastyakh s rebrami”, Problemy mat. analiza, no. 13, Izd-vo SPbGU, SPb., 1992, 106–147

[21] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[22] Goldshtein R. V., Salganik R. L., “O treschinakh, rasprostranyayuschikhsya mezhdu ploskimi plastinkami na pryamolineinoi granitse skleiki”, Prikl. mekhanika i teor. fizika, 1963, no. 5, 62–68

[23] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[24] Nazarov S. A., Polyakova O. R., “Kriterii razrusheniya, asimptoticheskie usloviya v vershinakh treschin i samosopryazhennye rasshireniya operatora Lame”, Tr. mosk. mat. o-va, 57, 1996, 16–75 | MR

[25] Bueckner H. F., “A novel principle for the computation of stress intensity factor”, ZAMM, 50 (1976), 529–546 | MR

[26] Nazarov S. A., “Lokalnaya ustoichivost i neustoichivost treschin normalnogo otryva”, Izv. AN SSSR. Mekhanika tverdogo tela, 1988, no. 3, 124–129