On optimal quadrature formulas
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 50-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quadrature formulas with free nodes which are optimal in the norm of a Banach space are studied. It is shown that it is impossible with some reasonable assumptions to increase the accuracy of such a formula by defining the partial derivatives of the integrable function at the nodes.
@article{SJIM_2005_8_1_a5,
     author = {A. V. Gavrilov},
     title = {On optimal quadrature formulas},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {50--52},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a5/}
}
TY  - JOUR
AU  - A. V. Gavrilov
TI  - On optimal quadrature formulas
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 50
EP  - 52
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a5/
LA  - ru
ID  - SJIM_2005_8_1_a5
ER  - 
%0 Journal Article
%A A. V. Gavrilov
%T On optimal quadrature formulas
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 50-52
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a5/
%G ru
%F SJIM_2005_8_1_a5
A. V. Gavrilov. On optimal quadrature formulas. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 50-52. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a5/

[1] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988 | MR

[2] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo In-ta matematiki, Novosibirsk, 1996 | Zbl

[3] Larkin F. M., “Optimal approximation in Hilbert spaces with reproducing Kernel functions”, Math. Comp., 24:112 (1970), 911–921 | DOI | MR

[4] Gavrilov A. V., “O kvadraturnykh formulakh, nailuchshikh v gilbertovom prostranstve s vosproizvodyaschim yadrom”, Sib. zhurn. vychisl. matematiki, 1:4 (1998), 313–320 | Zbl

[5] Gavrilov A. V., O nailuchshikh kvadraturnykh formulakh, Preprint IVMiMG SO RAN; No 1138, Novosibirsk, 1998, 13 pp. | MR