On optimal quadrature formulas
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 50-52
Cet article a éte moissonné depuis la source Math-Net.Ru
Quadrature formulas with free nodes which are optimal in the norm of a Banach space are studied. It is shown that it is impossible with some reasonable assumptions to increase the accuracy of such a formula by defining the partial derivatives of the integrable function at the nodes.
@article{SJIM_2005_8_1_a5,
author = {A. V. Gavrilov},
title = {On optimal quadrature formulas},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {50--52},
year = {2005},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a5/}
}
A. V. Gavrilov. On optimal quadrature formulas. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 50-52. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a5/
[1] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988 | MR
[2] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo In-ta matematiki, Novosibirsk, 1996 | Zbl
[3] Larkin F. M., “Optimal approximation in Hilbert spaces with reproducing Kernel functions”, Math. Comp., 24:112 (1970), 911–921 | DOI | MR
[4] Gavrilov A. V., “O kvadraturnykh formulakh, nailuchshikh v gilbertovom prostranstve s vosproizvodyaschim yadrom”, Sib. zhurn. vychisl. matematiki, 1:4 (1998), 313–320 | Zbl
[5] Gavrilov A. V., O nailuchshikh kvadraturnykh formulakh, Preprint IVMiMG SO RAN; No 1138, Novosibirsk, 1998, 13 pp. | MR