Numerical investigation of a~model problem for the Poisson equation with inequality constraints in a~domain with a~cut
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model problem is considered for the Poisson equation in a two-dimensional domain with a cut. The Dirichlet and Neumann conditions are imposed on the exterior boundary of the domain together with the nonnegativity condition for the jump across the edges of the cut. In addition, the absolute value of the gradient inside the domain must be bounded by some constant. The boundary value problem turns into a variational problem, and the unknown function must yield the minimum of the energy functional on some convex set. After discretization of the problem by the finite element method, an Uzawa-type algorithm is used to find a solution. Some examples are included of solving the discrete problem.
@article{SJIM_2005_8_1_a4,
     author = {E. V. Vtorushin},
     title = {Numerical investigation of a~model problem for the {Poisson} equation with inequality constraints in a~domain with a~cut},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a4/}
}
TY  - JOUR
AU  - E. V. Vtorushin
TI  - Numerical investigation of a~model problem for the Poisson equation with inequality constraints in a~domain with a~cut
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 41
EP  - 49
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a4/
LA  - ru
ID  - SJIM_2005_8_1_a4
ER  - 
%0 Journal Article
%A E. V. Vtorushin
%T Numerical investigation of a~model problem for the Poisson equation with inequality constraints in a~domain with a~cut
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 41-49
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a4/
%G ru
%F SJIM_2005_8_1_a4
E. V. Vtorushin. Numerical investigation of a~model problem for the Poisson equation with inequality constraints in a~domain with a~cut. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 41-49. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a4/

[1] Khludnev A., Sokolovski J., “The Griffith formula and the Rice–Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains”, European J. Appl. Math., 10 (1999), 379–394 | DOI | MR | Zbl

[2] Grisvard P., Singularities in Boundary Value Problems, Springer-Verl., Masson, Berlin, Paris, 1992 | MR | Zbl

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[4] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[5] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[6] Khludnev A., Kovtunenko V., Analysis of Cracks in Solids, WIT-Press, Southampton; Boston, 2000

[7] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[8] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[9] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR