The Andronov--Hopf bifurcation in a~model of a~hypothetical gene regulatory network
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of the limit cycles of small amplitude resulting from the Andronov–Hopf bifurcation is studied in a system of ordinary differential equations which describes the behavior of a hypothetical gene regulatory network.
@article{SJIM_2005_8_1_a3,
     author = {E. P. Volokitin and S. A. Treskov},
     title = {The {Andronov--Hopf} bifurcation in a~model of a~hypothetical gene regulatory network},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a3/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - S. A. Treskov
TI  - The Andronov--Hopf bifurcation in a~model of a~hypothetical gene regulatory network
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 30
EP  - 40
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a3/
LA  - ru
ID  - SJIM_2005_8_1_a3
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A S. A. Treskov
%T The Andronov--Hopf bifurcation in a~model of a~hypothetical gene regulatory network
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 30-40
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a3/
%G ru
%F SJIM_2005_8_1_a3
E. P. Volokitin; S. A. Treskov. The Andronov--Hopf bifurcation in a~model of a~hypothetical gene regulatory network. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 30-40. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a3/

[1] Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Zadachi teorii funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 6:2(14) (2003), 64–80 | MR

[2] Fadeev S. I., Likhoshvai V. A., “O gipoteticheskikh gennykh setyakh”, Sib. zhurn. industr. matematiki, 6:3(15) (2003), 134–153 | MR | Zbl

[3] Golubyatnikov V. P., Makarov E. V., “Closed trajectories in the gene networks”, Proc. 4 Internat. Conf. on Bioinformatics of Genome Regulation and Structure, v. 2 (Novosibirsk, July 25–30, 2004), Novosibirsk, 2004, 42–45

[4] Volokitin E. P., “O predelnykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti”, Sib. zhurn. industr. matematiki, 7:3(19) (2004), 57–65 | MR | Zbl

[5] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR | Zbl

[6] Kuznetsov Yu. A., Elements of Applied Bifurcation Theory, Springer-Verl., N. Y., 1995 | MR

[7] Kuznetsov Yu. A., “Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's”, SIAM J. Numer. Anal., 30 (1999), 1104–1124 | DOI | MR

[8] Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Matematicheskoe modelirovanie regulyarnykh konturov gennykh setei”, Zhurn. vychisl. matematiki i mat. fiziki, 44:12 (2004), 2276–2295 | MR | Zbl