On an approximation method of a~discontinuous solution of an ill-posed problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 129-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new algorithms of solving approximately linear and semilinear ill-posed problems with discontinuous exact solutions are proposed.
@article{SJIM_2005_8_1_a13,
     author = {V. P. Tanana and I. V. Tabarintseva},
     title = {On an approximation method of a~discontinuous solution of an ill-posed problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a13/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - I. V. Tabarintseva
TI  - On an approximation method of a~discontinuous solution of an ill-posed problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 129
EP  - 142
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a13/
LA  - ru
ID  - SJIM_2005_8_1_a13
ER  - 
%0 Journal Article
%A V. P. Tanana
%A I. V. Tabarintseva
%T On an approximation method of a~discontinuous solution of an ill-posed problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 129-142
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a13/
%G ru
%F SJIM_2005_8_1_a13
V. P. Tanana; I. V. Tabarintseva. On an approximation method of a~discontinuous solution of an ill-posed problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a13/

[1] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[2] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Izd-vo Instituta matematiki, Novosibirsk, 1999 | MR

[3] Tanana V. P., “O novom podkhode k otsenke pogreshnosti metodov resheniya nekorrektno postavlennykh zadach”, Sib. zhurn. industr. matematiki, 5:4 (2002), 150–163 | MR | Zbl

[4] Menikhes L. D., Tanana V. P., “Konechnomernaya approksimatsiya v metode M. M. Lavrenteva”, Sib. zhurn. vychisl. matematiki, 1:1 (1998), 59–66 | MR

[5] Tanana V. P., “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matematiki, 7:2 (2004), 117–132 | MR | Zbl

[6] Ivanov V. K., Korolyuk T. I., “Ob otsenke pogreshnosti pri reshenii nekorrektnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 9:1 (1969), 30–41 | MR | Zbl

[7] Strakhov V. N., “O reshenii lineinykh nekorrektnykh zadach v gilbertovom prostranstve”, Differents. uravneniya, 6:8 (1970), 1490–1495 | Zbl

[8] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[9] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993 | MR

[10] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[11] Tanana V. P., Rekant M. A., Yanchenko S. I., Optimizatsiya metodov resheniya operatornykh uravnenii, izd. Ural. gos. un-ta, Sverdlovsk, 1987 | MR | Zbl

[12] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Nauka, M., 1961

[13] Tanana V. P., “O skhodimosti regulyarizovannykh reshenii nelineinykh operatornykh uravnenii”, Sib. zhurn. industr. matematiki, 6:3 (2003), 119–133 | MR | Zbl