Approximate solution of a~mixed problem for a~parabolic equation by means of a~special basis of functions
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 117-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the eigenfunctions of two Sturm–Liouville problems (with the same operator of the most general form but two different sets of boundary conditions), we propose a method for construction of specific basis functions such that the corresponding expansions of smooth and piecewise smooth functions lead to fast converging series. The last circumstance can be successfully employed for approximate solution of mixed problems for a parabolic equation when the sought function is approximated in the spatial variables by few basis functions. First, the case of one spatial coordinate is elaborated and the two-dimensional case is briefly discussed in Section 5. The method aims primarily at the case when the sought function is piecewise smooth in the spatial variable and the implementation of the method bases on the concept of generalized solution.
@article{SJIM_2005_8_1_a12,
     author = {V. V. Smelov},
     title = {Approximate solution of a~mixed problem for a~parabolic equation by means of a~special basis of functions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a12/}
}
TY  - JOUR
AU  - V. V. Smelov
TI  - Approximate solution of a~mixed problem for a~parabolic equation by means of a~special basis of functions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 117
EP  - 128
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a12/
LA  - ru
ID  - SJIM_2005_8_1_a12
ER  - 
%0 Journal Article
%A V. V. Smelov
%T Approximate solution of a~mixed problem for a~parabolic equation by means of a~special basis of functions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 117-128
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a12/
%G ru
%F SJIM_2005_8_1_a12
V. V. Smelov. Approximate solution of a~mixed problem for a~parabolic equation by means of a~special basis of functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 117-128. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a12/

[1] Smelov V. V., “Approksimatsiya kusochno-gladkikh funktsii sobstvennymi elementami dvukh zadach Shturma–Liuvillya”, Dokl. AN SSSR, 250:3 (1980), 573–577 | MR | Zbl

[2] Smelov V. V., Operatory Shturma–Liuvillya i ikh neklassicheskie prilozheniya, Nauka, Novosibirsk, 1992 | MR | Zbl

[3] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000

[4] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR

[5] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[6] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[7] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR

[8] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii, Nauka, M., 1979 | MR | Zbl

[9] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[10] Smelov V. V., “Effective approximation of piecewise smooth functions by their expansion into fast convergent series in terms of functions formed by eigenfunctions of Sturm–Liouville problems”, Russian J. Numer. Anal. Math. Modelling, 19:5 (2004), 449–465 | DOI | MR | Zbl

[11] Smelov V. V., “O predstavlenii kusochno-gladkikh funktsii bystroskhodyaschimisya trigonometricheskimi ryadami”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 385–394 | Zbl

[12] Smelov V. V., “Ob ekonomichnoi approksimatsii kusochno-gladkikh funktsii na osnove ikh predstavleniya bystroskhodyaschimisya kusochno-polinomialnymi ryadami”, Sib. zhurn. vychisl. matematiki, 7:1 (2004), 67–77 | Zbl

[13] Smelov V. V., “Ob obobschennom reshenii dvumernoi ellipticheskoi zadachi s kusochno-postoyannymi koeffitsientami na osnove rasschepleniya differentsialnogo operatora i ispolzovaniya spetsificheskikh bazisnykh funktsii”, Sib. zhurn. vychisl. matematiki, 6:1 (2003), 59–72 | Zbl