Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 106-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional elastic body with a surface crack is considered. The boundary nonpenetration conditions in the form of inequalities (the Signorini type conditions) are given at the faces of the crack. The convergence is proved of a sequence of equilibrium problems in perturbed domains to the solution of an equilibrium problem in the unperturbed domain in a suitable Sobolev function space. The derivative is calculated of the energy functional with respect to the perturbation parameter of the surface crack.
@article{SJIM_2005_8_1_a11,
     author = {E. M. Rudoy},
     title = {Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {106--116},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a11/}
}
TY  - JOUR
AU  - E. M. Rudoy
TI  - Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 106
EP  - 116
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a11/
LA  - ru
ID  - SJIM_2005_8_1_a11
ER  - 
%0 Journal Article
%A E. M. Rudoy
%T Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 106-116
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a11/
%G ru
%F SJIM_2005_8_1_a11
E. M. Rudoy. Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 1, pp. 106-116. http://geodesic.mathdoc.fr/item/SJIM_2005_8_1_a11/

[1] Parton V. Z., Morozov E. M., Mekhanika uprugo-plasticheskogo razrusheniya, Nauka, M., 1974

[2] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974 | Zbl

[3] Kovtunenko V. A., “Shape sensitivity of a plane crack front”, Math. Methods Appl. Sci., 26 (2003), 359–374 | DOI | MR | Zbl

[4] Ohtsuka K., “Mathematics of brittle fracture”, Theoretical Studies on Fracture Mechanics in Japan, 1997, 99–172

[5] Mazya V. G., Nazarov S. A., “Asimptotika integralov energii pri malykh vozmuscheniyakh granitsy vblizi uglovykh i konicheskikh tochek”, Tr. Mosk. mat. o-va, 50, 1987, 79–129 | MR

[6] Khludnev A. M., Sokolowski J., “The Griffith formula and the Rice–Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains”, European J. Appl. Math., 10:4 (1999), 379–394 | DOI | MR | Zbl

[7] Kovtunenko V. A., “Invariantnye integraly energii dlya nelineinoi zadachi o treschine s vozmozhnym kontaktom beregov”, Prikl. matematika i mekhanika, 67:1 (2003), 109–123 | MR | Zbl

[8] Sokolovskii Ya., Khludnev A. M., “O differentsirovanii funktsionalov energii v teorii treschin s vozmozhnym kontaktom beregov”, Dokl. RAN, 374:6 (2000), 776–779 | MR

[9] Rudoi E. M., “Formula Griffitsa dlya plastiny s treschinoi”, Sib. zhurn. industr. matematiki, 5:3(11) (2002), 155–161 | MR | Zbl

[10] Kovtunenko V. A., “Shape sensitivity of curvilinear cracks on interface to non-linear perturbations”, Z. Angew. Math. Phys., 54 (2003), 410–423 | DOI | MR | Zbl

[11] Rudoi E. M., “Asimptotika integrala energii pri vozmuschenii granitsy”, Dinamika sploshnykh sred, Sb. nauch. tr., no. 116, In-t gidrodinamiki SO RAN, 2000, 97–103 | MR

[12] Kovtunenko V. A., “Sensitivity of interfacial cracks to non-linear crack front perturbations”, Z. Angew. Math. Mech., 82 (2002), 387–398 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] Khludnev A. M., Ohtsuka K., Sokolowski J., “On derivative of energy functional for elastic bodies with cracks and unilateral conditions”, Quart. Appl. Math., 60 (2002), 99–109 | MR | Zbl

[14] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WITPress, Southampton, Boston, 2000

[15] Rudoi E. M., “Invariantnye integraly dlya zadachi ravnovesiya plastiny s treschinoi”, Sib. mat. zhurn., 45:2 (2004), 466–477 | MR | Zbl

[16] Rudoi E. M., “Differentsirovanie funktsionalov energii v dvumernoi teorii uprugosti dlya tel, soderzhaschikh krivolineinye treschiny”, Prikl. matematika i teor. fizika, 45:6 (2004), 83–94 | MR | Zbl

[17] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[18] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Nauka, M., 1974