An algorithm for testing the practical regularity of symmetric interval matrices
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 15-20
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of check of a practical regularity of symmetric interval matrices is considered. In the work variant of the formula of Sherman–Morrison is suggested. This variant allowed to develop A. Bulgak's algorithm in view of specificity of symmetric interval matrices.
@article{SJIM_2004_7_3_a2,
author = {K. Aidyn},
title = {An algorithm for testing the practical regularity of symmetric interval matrices},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {15--20},
year = {2004},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a2/}
}
K. Aidyn. An algorithm for testing the practical regularity of symmetric interval matrices. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 15-20. http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a2/
[1] Bulgak A., “Checking of a well-conditioning of an interval matrix”, Sib. J. Diff. Equations, 3:4 (1998), 75–79
[2] Bulgak A., “Algoritm proverki prakticheskoi regulyarnosti intervalnykh matrits”, Sib. zhurn. vychisl. matematiki, 6:1 (2003), 17–23
[3] Bulgak A., “Checking a practical asymptotic stability of an interval matrix”, Selcuk J. Appl. Math., 2:1 (2001), 17–26 | Zbl
[4] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauch. kniga, Novosibirsk, 1997
[5] Householder A. S., Principles of Numerical Analysis, McGraw-Hill Book, New York, Toronto, London, 1953 | MR | Zbl
[6] Ortega J., Rheinboldt W., Iterative Solution of Nonlinear Equations in Several Variables, Acad. Press, N. Y., 1970 | MR | Zbl