On self-similar Jordan arcs on a~plane
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 148-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2004_7_3_a14,
     author = {A. V. Tetenov},
     title = {On self-similar {Jordan} arcs on a~plane},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {148--155},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a14/}
}
TY  - JOUR
AU  - A. V. Tetenov
TI  - On self-similar Jordan arcs on a~plane
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 148
EP  - 155
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a14/
LA  - ru
ID  - SJIM_2004_7_3_a14
ER  - 
%0 Journal Article
%A A. V. Tetenov
%T On self-similar Jordan arcs on a~plane
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 148-155
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a14/
%G ru
%F SJIM_2004_7_3_a14
A. V. Tetenov. On self-similar Jordan arcs on a~plane. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 148-155. http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a14/

[1] Bandt Ch., Graf S., “Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure”, Proc. Amer. Math. Soc., 114:4 (1992), 995–1001 | DOI | MR | Zbl

[2] Aseev V. V., Tetenov A. V., “O zhordanovykh samopodobnykh dugakh, dopuskayuschikh strukturnuyu parametrizatsiyu”, Sib. mat. zhurn., 46:4 (2005), 733–748 | MR | Zbl

[3] Aseev V. V., “On the regularity of self-similar zippers”, Proc. 6 Russian-Korean Internat. Symp. on Science and Technology “KORUS-2002”, v. 3, Novosibirsk, 2002, 167

[4] Aseev V. V., Tetenov A. V., Kravchenko A. S., “O samopodobnykh zhordanovykh krivykh na ploskosti”, Sib. mat. zhurn., 44:3 (2003), 481–492 | MR | Zbl

[5] Hutchinson J., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[6] Falconer K. J., Fractal geometry: mathematical foundations and applications, J. Wiley and Sons, N. Y., 1990 | MR | Zbl