Strong discontinuities in 2-submodels of class $E$~of gas dynamic equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 111-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider evolutionary invariant submodels with two independent variables of equations of gas dynamics. We discuss the question of the structure of strong discontinuities of the solutions of the corresponding systems of differential equations. These systems have multiple characteristics, though this does not interfere with the analysis of the nature of the strong discontinuities. We study the behavior of the derivatives of the solutions on shock waves. We solve the (local) problem of the interaction of shock waves and weak discontinuities.
@article{SJIM_2004_7_3_a11,
     author = {E. V. Mamontov},
     title = {Strong discontinuities in 2-submodels of class $E$~of gas dynamic equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {111--118},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a11/}
}
TY  - JOUR
AU  - E. V. Mamontov
TI  - Strong discontinuities in 2-submodels of class $E$~of gas dynamic equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 111
EP  - 118
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a11/
LA  - ru
ID  - SJIM_2004_7_3_a11
ER  - 
%0 Journal Article
%A E. V. Mamontov
%T Strong discontinuities in 2-submodels of class $E$~of gas dynamic equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 111-118
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a11/
%G ru
%F SJIM_2004_7_3_a11
E. V. Mamontov. Strong discontinuities in 2-submodels of class $E$~of gas dynamic equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 111-118. http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a11/

[1] Omelchenko A. V., “O svyazi proizvodnykh na silnom razryve”, Zhurn. vychisl. matematiki i mat. fiziki, 42:8 (2002), 1246–1257 | MR

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | MR | Zbl

[3] Mamontov E. V., “Negladkie resheniya 2-podmodelei klassa $E$ uravnenii gazovoi dinamiki”, Sib. zhurn. industr. matematiki, 6:1(13) (2003), 72–76 | MR | Zbl