An optimal system of finite-dimensional subalgebras of the Lie algebra allowed by the heat equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 88-98
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{SJIM_2004_7_2_a7,
author = {A. A. Kuzmina},
title = {An optimal system of finite-dimensional subalgebras of the {Lie} algebra allowed by the heat equation},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {88--98},
year = {2004},
volume = {7},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a7/}
}
TY - JOUR AU - A. A. Kuzmina TI - An optimal system of finite-dimensional subalgebras of the Lie algebra allowed by the heat equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2004 SP - 88 EP - 98 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a7/ LA - ru ID - SJIM_2004_7_2_a7 ER -
A. A. Kuzmina. An optimal system of finite-dimensional subalgebras of the Lie algebra allowed by the heat equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 88-98. http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a7/
[1] Samarskii A. F., Galaktionov V. A., Kurdyumov A. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[2] Gazizov R. K., Ibragimov N. H., “Lie symmetry of differential equations in finance”, Nonlinear Dynamics, 17 (1998), 387–407 | DOI | MR | Zbl
[3] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[4] Ovsyannikov L. V., “Programma podmodeli. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl
[5] Khabirov S. V., Teoriya polya. Uravneniya mekhaniki sploshnoi sredy, Ucheb. posobie, Ufimskii gos. aviats. tekhn. un-t, Ufa, 1994