An optimal system of finite-dimensional subalgebras of the Lie algebra allowed by the heat equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 88-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2004_7_2_a7,
     author = {A. A. Kuzmina},
     title = {An optimal system of finite-dimensional subalgebras of the {Lie} algebra allowed by the heat equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {88--98},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a7/}
}
TY  - JOUR
AU  - A. A. Kuzmina
TI  - An optimal system of finite-dimensional subalgebras of the Lie algebra allowed by the heat equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 88
EP  - 98
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a7/
LA  - ru
ID  - SJIM_2004_7_2_a7
ER  - 
%0 Journal Article
%A A. A. Kuzmina
%T An optimal system of finite-dimensional subalgebras of the Lie algebra allowed by the heat equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 88-98
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a7/
%G ru
%F SJIM_2004_7_2_a7
A. A. Kuzmina. An optimal system of finite-dimensional subalgebras of the Lie algebra allowed by the heat equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 88-98. http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a7/

[1] Samarskii A. F., Galaktionov V. A., Kurdyumov A. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[2] Gazizov R. K., Ibragimov N. H., “Lie symmetry of differential equations in finance”, Nonlinear Dynamics, 17 (1998), 387–407 | DOI | MR | Zbl

[3] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[4] Ovsyannikov L. V., “Programma podmodeli. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[5] Khabirov S. V., Teoriya polya. Uravneniya mekhaniki sploshnoi sredy, Ucheb. posobie, Ufimskii gos. aviats. tekhn. un-t, Ufa, 1994