Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 54-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2004_7_2_a5,
     author = {A. V. Kabannik and I. A. Orlov and V. A. Tcheverda},
     title = {Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {54--67},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/}
}
TY  - JOUR
AU  - A. V. Kabannik
AU  - I. A. Orlov
AU  - V. A. Tcheverda
TI  - Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 54
EP  - 67
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/
LA  - ru
ID  - SJIM_2004_7_2_a5
ER  - 
%0 Journal Article
%A A. V. Kabannik
%A I. A. Orlov
%A V. A. Tcheverda
%T Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 54-67
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/
%G ru
%F SJIM_2004_7_2_a5
A. V. Kabannik; I. A. Orlov; V. A. Tcheverda. Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 54-67. http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/

[1] Goldin S. V., “K teorii luchevoi seismicheskoi tomografii, I. Preobrazovanie Radona v polose i ego obraschenie”, Geologiya i geofizika, 37:5 (1996), 3–18

[2] Goldin S. V., “K teorii luchevoi seismicheskoi tomografii, II. Obratnye zadachi dlya odnorodnykh referentnykh sred”, Geologiya i geofizika, 37:9 (1996), 14–25

[3] Goldin S. V., “Obratnye zadachi luchevoi seismicheskoi tomografii”, Geologiya i geofizika, 38:5 (1997), 981–998

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[5] Kostin V. I., Khaidukov V. G., Cheverda V. A., “$r$-Resheniya uravneniya pervogo roda s kompaktnym operatorom v gilbertovykh prostranstvakh: suschestvovanie i ustoichivost”, Dokl. RAN, 352:3 (1997), 308–312 | MR

[6] Kostin V. I., Tcheverda V. A., “$r$-Pseudoinverse for compact operators in Hilbert spaces: existence and stability”, J. Inverse Ill-Posed Probl., 3:2 (1995), 131–148 | MR | Zbl

[7] Hanke M., Conjugate Gradient Type Methods for Ill-Posed Problems, Longman House, Harlow, 1995 | MR | Zbl

[8] Paige C. C., Saunders M. A., “LSQR: An algorithm for sparse linear equations and sparde least squares”, ACM Trans. Math. Software, 8 (1982), 43–71 | DOI | MR | Zbl

[9] Zhang J., McMechan A., “Estimation of resolution and covariance for large matrix inversion”, Geophys. J. Internat., 121 (1995), 409–426 | DOI

[10] Bobrov B. A., Gik L. D., Derzhi N. M., Orlov Yu. A., Programmno-apparaturnyi kompleks “EKhO-1” dlya ultrazvukovogo seismicheskogo modelirovaniya, Metod. rekomendatsii, IGiG SO AN SSSR, Novosibirsk, 1984

[11] Orlov Yu. A., Gik L. D., Puzyrev N. N., Laboratornoe seismomodelirovanie primenitelno k usloviyam Sibirskoi platformy. Modelirovanie zadach seismorazvedki, Sb. nauch. trudov, IGiG SO AN SSSR, Novosibirsk, 1988