Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2004_7_2_a5, author = {A. V. Kabannik and I. A. Orlov and V. A. Tcheverda}, title = {Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {54--67}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/} }
TY - JOUR AU - A. V. Kabannik AU - I. A. Orlov AU - V. A. Tcheverda TI - Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2004 SP - 54 EP - 67 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/ LA - ru ID - SJIM_2004_7_2_a5 ER -
%0 Journal Article %A A. V. Kabannik %A I. A. Orlov %A V. A. Tcheverda %T Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data %J Sibirskij žurnal industrialʹnoj matematiki %D 2004 %P 54-67 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/ %G ru %F SJIM_2004_7_2_a5
A. V. Kabannik; I. A. Orlov; V. A. Tcheverda. Numerical solution of a~problem of linear seismic tomography on transient waves: the case of incomplete data. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 54-67. http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a5/
[1] Goldin S. V., “K teorii luchevoi seismicheskoi tomografii, I. Preobrazovanie Radona v polose i ego obraschenie”, Geologiya i geofizika, 37:5 (1996), 3–18
[2] Goldin S. V., “K teorii luchevoi seismicheskoi tomografii, II. Obratnye zadachi dlya odnorodnykh referentnykh sred”, Geologiya i geofizika, 37:9 (1996), 14–25
[3] Goldin S. V., “Obratnye zadachi luchevoi seismicheskoi tomografii”, Geologiya i geofizika, 38:5 (1997), 981–998
[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl
[5] Kostin V. I., Khaidukov V. G., Cheverda V. A., “$r$-Resheniya uravneniya pervogo roda s kompaktnym operatorom v gilbertovykh prostranstvakh: suschestvovanie i ustoichivost”, Dokl. RAN, 352:3 (1997), 308–312 | MR
[6] Kostin V. I., Tcheverda V. A., “$r$-Pseudoinverse for compact operators in Hilbert spaces: existence and stability”, J. Inverse Ill-Posed Probl., 3:2 (1995), 131–148 | MR | Zbl
[7] Hanke M., Conjugate Gradient Type Methods for Ill-Posed Problems, Longman House, Harlow, 1995 | MR | Zbl
[8] Paige C. C., Saunders M. A., “LSQR: An algorithm for sparse linear equations and sparde least squares”, ACM Trans. Math. Software, 8 (1982), 43–71 | DOI | MR | Zbl
[9] Zhang J., McMechan A., “Estimation of resolution and covariance for large matrix inversion”, Geophys. J. Internat., 121 (1995), 409–426 | DOI
[10] Bobrov B. A., Gik L. D., Derzhi N. M., Orlov Yu. A., Programmno-apparaturnyi kompleks “EKhO-1” dlya ultrazvukovogo seismicheskogo modelirovaniya, Metod. rekomendatsii, IGiG SO AN SSSR, Novosibirsk, 1984
[11] Orlov Yu. A., Gik L. D., Puzyrev N. N., Laboratornoe seismomodelirovanie primenitelno k usloviyam Sibirskoi platformy. Modelirovanie zadach seismorazvedki, Sb. nauch. trudov, IGiG SO AN SSSR, Novosibirsk, 1988