A~method for solving a~three-dimensional transport equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 148-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of methods of operational calculus, quasilinearization, and splitting by spatial coordinates, we find an approximate analytic solution of a boundary value problem for a three-dimensional nonlinear transport equation. We obtain conditions for the unique solvability of the boundary value problem and give an estimate for the rate of convergence of the iterative process. We present the result of test verifications.
@article{SJIM_2004_7_2_a13,
     author = {A. S. Yakimov and A. G. Kataev},
     title = {A~method for solving a~three-dimensional transport equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {148--161},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a13/}
}
TY  - JOUR
AU  - A. S. Yakimov
AU  - A. G. Kataev
TI  - A~method for solving a~three-dimensional transport equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 148
EP  - 161
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a13/
LA  - ru
ID  - SJIM_2004_7_2_a13
ER  - 
%0 Journal Article
%A A. S. Yakimov
%A A. G. Kataev
%T A~method for solving a~three-dimensional transport equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 148-161
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a13/
%G ru
%F SJIM_2004_7_2_a13
A. S. Yakimov; A. G. Kataev. A~method for solving a~three-dimensional transport equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 148-161. http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a13/

[1] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[2] Grishin A. M., Fomin V. M., Sopryazhennye i nestatsionarnye zadachi mekhaniki reagiruyuschikh sred, Nauka, Novosibirsk, 1984

[3] Bellman R., Kalaba R., Kvazilinearizatsiya i nelineinye kraevye zadachi, Mir, M., 1968 | Zbl

[4] Kantorovich L. V., “Funktsionalnyi analiz i prikladnaya matematika”, Usp. mat., 3:6 (1948), 89–185 | MR | Zbl

[5] Yakimov A. S., “Odin metod resheniya nelineinogo uravneniya perenosa”, Sib. zhurn. industr. matematiki, 6:1(13) (2003), 154–162 | MR | Zbl

[6] Ditkin V. A., Prudnikov A. P., Operatsionnoe ischislenie, Vyssh. shk., M., 1966 | Zbl

[7] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[8] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[9] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[10] Goldin V. Ya., Danilova G. V., Kalitkin N. N., “Chislennoe integrirovanie mnogomernogo uravneniya perenosa”, Chislennye metody resheniya zadach matematicheskoi fiziki, Nauka, M., 1966, 190–193

[11] Grishin A. M., Yakimov A. S., “Ob odnom metode resheniya nekotorykh trekhmernykh uravnenii v chastnykh proizvodnykh”, Vychisl. tekhnologii, 5:5 (2000), 38–52 | MR | Zbl

[12] Lykov A. V., “Metody resheniya nelineinykh uravnenii nestatsionarnoi teploprovodnosti”, Izv. AN SSSR. Ser. Energetika i transport, 1970, no. 5, 109–150 | Zbl

[13] Matveev N. M., Metody integrirovaniya obyknovennykh differentsialnykh uravnenii, Vyssh. shk., M., 1967 | Zbl

[14] Vygodskii M. Ya., Spravochnik po vysshei matematike, Fizmatgiz, M., 1962 | MR