On the Fourier transform of a~class of generalized homogeneous functions
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 1, pp. 130-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of homogeneous functions of three variables with homogeneity degree $-1$ that are smooth on the unit sphere. We obtain relations that enable us to express the Fourier transform of such functions in terms of their values on the unit sphere. The Fourier transform is understood in the sense of generalized functions. We show that the relations obtained can be used to construct three-dimensional cone-beam tomographic reconstruction algorithms.
@article{SJIM_2004_7_1_a11,
     author = {O. E. Trofimov},
     title = {On the {Fourier} transform of a~class of generalized homogeneous functions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {130--134},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a11/}
}
TY  - JOUR
AU  - O. E. Trofimov
TI  - On the Fourier transform of a~class of generalized homogeneous functions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 130
EP  - 134
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a11/
LA  - ru
ID  - SJIM_2004_7_1_a11
ER  - 
%0 Journal Article
%A O. E. Trofimov
%T On the Fourier transform of a~class of generalized homogeneous functions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 130-134
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a11/
%G ru
%F SJIM_2004_7_1_a11
O. E. Trofimov. On the Fourier transform of a~class of generalized homogeneous functions. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 1, pp. 130-134. http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a11/

[1] Lavrentev M. M., Zerkal S. M., Trofimov O. E., Chislennoe modelirovanie v tomografii i uslovno-korrektnye zadachi, Izd-vo IDMI NGU, Novosibirsk, 1999

[2] Tuy H. K., “An inversion formula for cone-beam reconstruction”, SIAM. J. Appl. Math., 43:3 (1983), 546–552 | DOI | MR

[3] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[4] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Vyp. 1: Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[5] Denisyuk A. S., Issledovanie po integralnoi geometrii v veschestvennom prostranstve, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1991

[6] Semyanistyi V. I., “Odnorodnye funktsii i nekotorye zadachi integralnoi geometrii v prostranstvakh postoyannoi krivizny”, Dokl. AN SSSR, 136:2 (1961), 288–291 | Zbl

[7] Sobolev S. L., “Zadacha Koshi v prostranstve funktsionalov”, Dokl. AN SSSR, 3:7 (1935), 291–294 | Zbl