On a relation between the Arikonov-Amirov identity and the Pestov identity
Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 2, pp. 15-25
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{SJIM_2003_6_2_a1,
author = {V. G. Bardakov},
title = {On a~relation between the {Arikonov-Amirov} identity and the {Pestov} identity},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {15--25},
year = {2003},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2003_6_2_a1/}
}
V. G. Bardakov. On a relation between the Arikonov-Amirov identity and the Pestov identity. Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 2, pp. 15-25. http://geodesic.mathdoc.fr/item/SJIM_2003_6_2_a1/
[1] Anikonov Yu. E., Bardakov V. G., “Direct and inverse problems for kinetic equations”, J. Inverse Ill-Posed Probl., 8:6 (2000), 591–634 | MR
[2] Anikonov Yu. E., Predstavlenie reshenii kineticheskikh uravnenii i obratnye zadachi, Preprint RAN. In-t matematiki SO RAN; No 94, Novosibirsk, 2002, 42 pp.
[3] Anikonov Yu. E., Amirov A. K., “Teorema edinstvennosti resheniya obratnoi zadachi dlya kineticheskogo uravneniya”, Dokl. AN SSSR, 272:6 (1983), 1292–1293 | MR | Zbl
[4] Anikonov Yu. E., Pestov L. N., Formuly v lineinykh i nelineinykh zadachakh tomografii, Izd-vo NGU, Novosibirsk, 1990 | Zbl
[5] Anikonov Yu. E., Lavrentev M. M., “Ob odnom klasse zadach integralnoi geometrii”, Dokl. AN SSSR, 176:5 (1967), 1240–1241 | MR | Zbl