A~boundary value problem of transport theory in a~multilayer medium with generalized conjugation conditions
Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 1, pp. 93-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2003_6_1_a11,
     author = {I. V. Prokhorov and I. P. Yarovenko},
     title = {A~boundary value problem of transport theory in a~multilayer medium with generalized conjugation conditions},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {93--107},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2003_6_1_a11/}
}
TY  - JOUR
AU  - I. V. Prokhorov
AU  - I. P. Yarovenko
TI  - A~boundary value problem of transport theory in a~multilayer medium with generalized conjugation conditions
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2003
SP  - 93
EP  - 107
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2003_6_1_a11/
LA  - ru
ID  - SJIM_2003_6_1_a11
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%A I. P. Yarovenko
%T A~boundary value problem of transport theory in a~multilayer medium with generalized conjugation conditions
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2003
%P 93-107
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2003_6_1_a11/
%G ru
%F SJIM_2003_6_1_a11
I. V. Prokhorov; I. P. Yarovenko. A~boundary value problem of transport theory in a~multilayer medium with generalized conjugation conditions. Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 1, pp. 93-107. http://geodesic.mathdoc.fr/item/SJIM_2003_6_1_a11/

[1] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tp. Mat. in-ta im. Steklova, 61, 1961, 3–158

[2] Marchuk G. I., Mikhailov G. A., Nazarliev M. A., Drobinyan R. A., Kargin B. A., Elepov B. S., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[3] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR

[4] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[5] Isimaru A., Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, Mir, M., 1981

[6] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[7] Born M., Volf E., Osnovy optiki, Nauka, M., 1973

[8] Tuchin V. V., “Issledovanie biotkanei metodami svetorasseyaniya”, Uspekhi fiz. nauk, 167:5 (1997), 517–539 | DOI

[9] Prokhorov I. V., “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differents. uravneniya, 36:6 (2000), 848–851 | MR | Zbl

[10] Sushkevich T. A., “Reshenie kraevoi zadachi teorii perenosa dlya ploskogo sloya s gorizontalno-neodnorodnoi granitsei razdela dvukh sred”, Dokl. RAN, 350:4 (1996), 460–464 | MR | Zbl

[11] Potapov V. S., “Metod resheniya uravneniya teorii perenosa dlya opticheski tolstogo sloya s otrazhayuschimi granitsami”, Teor. i mat. fizika, 100:2 (1994), 287–303 ; 3, 424–443 | MR | MR | Zbl

[12] Ishimaru A., “Diffusion of light turbidmaterial”, Appl. Optics., 28:12 (1989), 2210–2215 | DOI

[13] Star W. M., Marjinissen J., “Calculating the response of isotropic light dosimetry probes as a function of the tissue refractive index”, Appl. Optics., 28:12 (1989), 2288–2291 | DOI

[14] Prahl S. A., Keijzer M., Jacques S. L., Welch A. J., “A Monte Carlo model of light propagation in tissue”, SPIE Proc. of dosimetry of laser radiation in medicine and biology, IS 5 (1989), 102–111

[15] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[16] Shvarts L., Analiz, Mir, M., 1972

[17] Shilov G. E., Gurevich B. L., Integral, mera i proizvodnaya, Nauka, M., 1964 | MR

[18] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Lan, M., 1999