Recognition of a~quasiperiodic sequence that includes identical subsequences-fragments
Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 4, pp. 38-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2002_5_4_a3,
     author = {A. V. Kel'manov and S. A. Khamidullin and L. V. Okol'nishnikova},
     title = {Recognition of a~quasiperiodic sequence that includes identical subsequences-fragments},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {38--54},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_4_a3/}
}
TY  - JOUR
AU  - A. V. Kel'manov
AU  - S. A. Khamidullin
AU  - L. V. Okol'nishnikova
TI  - Recognition of a~quasiperiodic sequence that includes identical subsequences-fragments
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2002
SP  - 38
EP  - 54
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2002_5_4_a3/
LA  - ru
ID  - SJIM_2002_5_4_a3
ER  - 
%0 Journal Article
%A A. V. Kel'manov
%A S. A. Khamidullin
%A L. V. Okol'nishnikova
%T Recognition of a~quasiperiodic sequence that includes identical subsequences-fragments
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2002
%P 38-54
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2002_5_4_a3/
%G ru
%F SJIM_2002_5_4_a3
A. V. Kel'manov; S. A. Khamidullin; L. V. Okol'nishnikova. Recognition of a~quasiperiodic sequence that includes identical subsequences-fragments. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 4, pp. 38-54. http://geodesic.mathdoc.fr/item/SJIM_2002_5_4_a3/

[1] Kelmanov A. V., Khamidullin S. A., “Optimalnoe obnaruzhenie zadannogo chisla odinakovykh podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 333–349 | MR

[2] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe obnaruzhenie zadannogo chisla odinakovykh podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Zhurn. vychisl. matematiki i mat. fiziki, 41:5 (2001), 807–820 | MR

[3] Kelmanov A. V., Khamidullin S. A., “Aposteriornoe sovmestnoe obnaruzhenie i razlichenie zadannogo chisla podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Sib. zhurn. industr. matematiki, 2:2(4) (1999), 106–119 | MR

[4] Kelmanov A. V., Khamidullin S. A., “Raspoznavanie kvaziperiodicheskoi posledovatelnosti, obrazovannoi iz zadannogo chisla odinakovykh podposledovatelnostei”, Sib. zhurn. industr. matematiki, 2:1 (1999), 53–74 | MR

[5] Kelmanov A. V., Okolnishnikova L. V., “Aposteriornoe sovmestnoe obnaruzhenie i razlichenie podposledovatelnostei v kvaziperiodicheskoi posledovatelnosti”, Sib. zhurn. industr. matematiki, 3:2(6) (2000), 115–139 | MR

[6] Kelmanov A. V., Khamidullin S. A., Okolnishnikova L. V., “Aposteriornoe obnaruzhenie odinakovykh podposledovatelnostei-fragmentov v kvaziperiodicheskoi posledovatelnosti”, Sib. zhurn. industr. matematiki, 5:2(10) (2000), 94–108 | MR

[7] Kelmanov A. V., Kutnenko O. A., “Algoritm raspoznavaniya kvaziperiodicheskoi posledovatelnosti impulsov i obnaruzheniya momentov ikh nachala v gaussovskom shume”, Iskusstvennyi intellekt i ekspertnye sistemy, Vychislitelnyi sistemy, 157, Novosibirsk, 1996, 137–180 | MR

[8] Kelmanov A. V., “Granitsy veroyatnosti oshibki raspoznavaniya kvaziperiodicheskoi posledovatelnosti, obrazovannoi iz zadannogo chisla odinakovykh podposledovatelnostei”, Sib. zhurn. vychisl. matematiki, 3:4 (2000), 333–344