Solution of the inverse problem for a~matrix transport equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 3, pp. 35-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2002_5_3_a5,
     author = {V. G. Bardakov},
     title = {Solution of the inverse problem for a~matrix transport equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {35--52},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a5/}
}
TY  - JOUR
AU  - V. G. Bardakov
TI  - Solution of the inverse problem for a~matrix transport equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2002
SP  - 35
EP  - 52
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a5/
LA  - ru
ID  - SJIM_2002_5_3_a5
ER  - 
%0 Journal Article
%A V. G. Bardakov
%T Solution of the inverse problem for a~matrix transport equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2002
%P 35-52
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a5/
%G ru
%F SJIM_2002_5_3_a5
V. G. Bardakov. Solution of the inverse problem for a~matrix transport equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 3, pp. 35-52. http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a5/

[1] Vladimirov V. S., Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 61, 1961 | MR

[2] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[3] Tikhonov A. N., Arsenin V. Ya., Timonov A. A., Matematicheskie zadachi kompyuternoi tomografii, Nauka, M., 1987 | MR

[4] Vertgeim L. B., “Integralnaya geometriya s matrichnym vesom i odna nelineinaya zadacha vosstanovleniya matrits”, Dokl. AN SSSR, 319:3 (1991), 531–534 | MR | Zbl

[5] Vertgeim L. B., Zadacha integralnoi geometrii vdol neskolkikh semeistv krivykh i ee primenenie k obratnoi zadache dlya sistemy uravnenii Vlasova, Preprint In-t matematiki SO RAN; No 66, Novosibirsk, 1999, 15 pp.

[6] Anikonov Yu. E., Bardakov V. G., “Direct and inverse problems for kinetic equations”, J. Inverse Ill-Posed Probl., 8:6 (2000), 591–634 | MR

[7] Anikonov Yu. E., “Obratnye zadachi dlya kineticheskikh uravnenii”, Uslovno-korrektnye zadachi matematicheskoi fiziki i analiza, Nauka, Novosibirsk, 1992, 26–41 | MR

[8] Anikonov Yu. E., “Several results of multidimensional inverse problems theory”, J. Inverse Ill-Posed Probl., 6:1 (1998), 1–21 | MR | Zbl

[9] Anikonov Yu. E., Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht, 1997 | MR

[10] Hile G. N., “Function theory for generalized Beltrami systems”, Contemp. Mathematicians, 11 (1982), 101–125 | Zbl

[11] Boyarskii B. V., “Teoriya obobschennogo analiticheskogo vektora”, Ann. Polon. Math., 17:3 (1966), 281–320

[12] Kazantsev S. G., “Integralnye formuly tipa Koshi dlya obobschennykh $A$-analiticheskikh funktsii”, Gruppovye i metricheskie svoistva otobrazhenii, izd. Novosib. gos. un-ta, Novosibirsk, 1995, 126–141 | MR

[13] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[14] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy, svyazannye s neyu, Fizmatgiz, M., 1961