Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2002_5_1_a7, author = {A. S. Iskakova}, title = {Determination of the most suitable unbiased estimate for a~weather forecast being correc}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {79--84}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a7/} }
TY - JOUR AU - A. S. Iskakova TI - Determination of the most suitable unbiased estimate for a~weather forecast being correc JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2002 SP - 79 EP - 84 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a7/ LA - ru ID - SJIM_2002_5_1_a7 ER -
A. S. Iskakova. Determination of the most suitable unbiased estimate for a~weather forecast being correc. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 1, pp. 79-84. http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a7/
[1] Panaretos J., Xekalaki E., “On generalized binomial and multinomial distributions and their relation to generalized Poisson distributions”, Ann. Inst. Stat. Math., 38 (1986), 223–231 | DOI | MR | Zbl
[2] Nikulin M. S., Smirnov T. I., Voinov V. G., Multivariate distributions induced by an urn scheme, linear diophantine equations, unbiased estimating end testing, Rapports Internes de l'Unité Math. Appliquées Bordeaux, No 98023, 1998, 11
[3] Iskakova A. S., “O klasse mnogomernykh diskretnykh raspredelenii veroyatnostei, porozhdaemykh urnovoi skhemoi s sharami, pomechennymi pryamougolnymi matritsami”, Vest. KazGU. Ser. Matematika, mekhanika, informatika, 2000, no. 1(20), 92–97
[4] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975 | MR