Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2002_5_1_a4, author = {E. Yu. Derevtsov and I. G. Kashina}, title = {Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {39--62}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/} }
TY - JOUR AU - E. Yu. Derevtsov AU - I. G. Kashina TI - Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2002 SP - 39 EP - 62 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/ LA - ru ID - SJIM_2002_5_1_a4 ER -
%0 Journal Article %A E. Yu. Derevtsov %A I. G. Kashina %T Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases %J Sibirskij žurnal industrialʹnoj matematiki %D 2002 %P 39-62 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/ %G ru %F SJIM_2002_5_1_a4
E. Yu. Derevtsov; I. G. Kashina. Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 1, pp. 39-62. http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/
[1] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR
[2] Romanov V. G., “Integralnaya geometriya na geodezicheskikh izotropnoi rimanovoi metriki”, Dokl. AN SSSR, 241:2 (1978), 290–293 | MR | Zbl
[3] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR | Zbl
[4] Norton S. J., “Tomographic reconstruction of 2-D vector fields: application to flow imaging”, J. Geophys, 97 (1987), 161–168 | DOI
[5] Sparr G., Strahlen K., Lindstrom K., Persson H. W., “Doppler tomography for vector fields”, Inverse Problems, 11:5 (1995), 1051–1061 | DOI | MR | Zbl
[6] Derevtsov E. Yu., Kleschev A. G., Sharafutdinov V. A., Metod nailuchshego priblizheniya v zadache emissionnoi tomografii, Preprint In-t matematiki SO RAN; No 29, Novosibirsk, 1996, 30 pp.
[7] Derevtsov E. Yu., Kashina I. G., Priblizhennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov, Preprint In-t matematiki SO RAN; No 74, Novosibirsk, 2000, 28 pp.
[8] Derevtsov E. Yu., “Priblizhennyi metod resheniya zadachi rekonstruktsii tenzornogo polya po ego luchevomu preobrazovaniyu”, Matematicheskie problemy ekologii, Tr. 3 Mezhdunar. konf. MAPEK-96, Novosibirsk, 1996, 21–31
[9] Bezuglova M. A., Derevtsov E. Yu., Sorokin S. B., Reshenie zadachi vektornoi tomografii setochnymi metodami, Preprint In-t matematiki SO RAN; No 81, Novosibirsk, 2000, 30 pp.