Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases
Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 1, pp. 39-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2002_5_1_a4,
     author = {E. Yu. Derevtsov and I. G. Kashina},
     title = {Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {39--62},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - I. G. Kashina
TI  - Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2002
SP  - 39
EP  - 62
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/
LA  - ru
ID  - SJIM_2002_5_1_a4
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A I. G. Kashina
%T Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2002
%P 39-62
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/
%G ru
%F SJIM_2002_5_1_a4
E. Yu. Derevtsov; I. G. Kashina. Approximate solution of the problem of the reconstruction of a~tensor field of valence two using polynomial bases. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 1, pp. 39-62. http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a4/

[1] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[2] Romanov V. G., “Integralnaya geometriya na geodezicheskikh izotropnoi rimanovoi metriki”, Dokl. AN SSSR, 241:2 (1978), 290–293 | MR | Zbl

[3] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR | Zbl

[4] Norton S. J., “Tomographic reconstruction of 2-D vector fields: application to flow imaging”, J. Geophys, 97 (1987), 161–168 | DOI

[5] Sparr G., Strahlen K., Lindstrom K., Persson H. W., “Doppler tomography for vector fields”, Inverse Problems, 11:5 (1995), 1051–1061 | DOI | MR | Zbl

[6] Derevtsov E. Yu., Kleschev A. G., Sharafutdinov V. A., Metod nailuchshego priblizheniya v zadache emissionnoi tomografii, Preprint In-t matematiki SO RAN; No 29, Novosibirsk, 1996, 30 pp.

[7] Derevtsov E. Yu., Kashina I. G., Priblizhennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov, Preprint In-t matematiki SO RAN; No 74, Novosibirsk, 2000, 28 pp.

[8] Derevtsov E. Yu., “Priblizhennyi metod resheniya zadachi rekonstruktsii tenzornogo polya po ego luchevomu preobrazovaniyu”, Matematicheskie problemy ekologii, Tr. 3 Mezhdunar. konf. MAPEK-96, Novosibirsk, 1996, 21–31

[9] Bezuglova M. A., Derevtsov E. Yu., Sorokin S. B., Reshenie zadachi vektornoi tomografii setochnymi metodami, Preprint In-t matematiki SO RAN; No 81, Novosibirsk, 2000, 30 pp.