A~Gibbs model of a~fragment of a~stationary random field defined by an autoregression equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 1, pp. 20-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2002_5_1_a2,
     author = {V. N. Vasyukov and D. V. Goleshchikhin},
     title = {A~Gibbs model of a~fragment of a~stationary random field defined by an autoregression equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a2/}
}
TY  - JOUR
AU  - V. N. Vasyukov
AU  - D. V. Goleshchikhin
TI  - A~Gibbs model of a~fragment of a~stationary random field defined by an autoregression equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2002
SP  - 20
EP  - 28
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a2/
LA  - ru
ID  - SJIM_2002_5_1_a2
ER  - 
%0 Journal Article
%A V. N. Vasyukov
%A D. V. Goleshchikhin
%T A~Gibbs model of a~fragment of a~stationary random field defined by an autoregression equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2002
%P 20-28
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a2/
%G ru
%F SJIM_2002_5_1_a2
V. N. Vasyukov; D. V. Goleshchikhin. A~Gibbs model of a~fragment of a~stationary random field defined by an autoregression equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a2/

[1] Derin Kh., Kelli P., “Sluchainye protsessy markovskogo tipa s diskretnymi argumentami”, TIIER, 77:10 (1989), 42–71

[2] Geman S., Geman D., “Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images”, IEEE Trans. Pattern Anal. Mach. Intelligence, 6:6 (1984), 721–741 | DOI | Zbl

[3] Derin H., Elliott H., “Modeling and segmentation of noisy and textured images using Gibbs random fields”, IEEE Trans. Pattern Anal. Mach. Intelligence, 9:1 (1987), 39–55 | DOI

[4] Vasyukov V. N., Goleschikhin D. V., “Vosstanovlenie iskazhennykh izobrazhenii, predstavlyaemykh gibbsovskimi modelyami”, Dokl. SO AN VSh, 2000, no. 2, 36–47 | MR

[5] Vasyukov V. N., Goleshchikhin D. V., “Nonlinear reconstruction of images described by Gibbs models”, Proc. 5 Korea-Russia Intern. Symp. on Science and Technology, v. 1 (KORUS'2001), State Polytech. Univ., Tomsk, 2001, 91–95 | MR

[6] Sinai Ya. G., Teoriya fazovykh perekhodov: strogie rezultaty, Nauka, M., 1980 | MR

[7] Vasyukov V. N., “Statsionarizatsiya gibbsovskoi modeli konechnoi markovskoi tsepi”, Sib. zhurn. industr. matematiki, 4:1(7) (2001), 14–21 | MR

[8] Dzhain A. K., “Uspekhi v oblasti matematicheskikh modelei dlya obrabotki izobrazhenii”, TIIER, 69:5 (1981), 9–39

[9] Marpl-ml. S. L., Tsifrovoi spektralnyi analiz i ego prilozheniya, Mir, M., 1990

[10] Gimelfarb G. L., Zalesnyi A. V., “Modeli markovskikh sluchainykh polei v zadachakh generatsii i segmentatsii teksturnykh izobrazhenii”, Sredstva intellektualizatsii kiberneticheskikh sistem, izd. In-ta kibernetiki im. V. M. Glushkova, Kiev, 1989, 27

[11] Terren S. U., “O svyazi mezhdu razlozheniem na treugolnye matritsy i lineinym predskazaniem”, TIIER, 71:12 (1983), 158–159