Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2002_5_1_a13, author = {D. B. Rokhlin}, title = {A~criterion for the nonexistence of the asymptotic free lunch in a~finite-dimensional market under convex portfolio constraints and convex transaction costs}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {133--144}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a13/} }
TY - JOUR AU - D. B. Rokhlin TI - A~criterion for the nonexistence of the asymptotic free lunch in a~finite-dimensional market under convex portfolio constraints and convex transaction costs JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2002 SP - 133 EP - 144 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a13/ LA - ru ID - SJIM_2002_5_1_a13 ER -
%0 Journal Article %A D. B. Rokhlin %T A~criterion for the nonexistence of the asymptotic free lunch in a~finite-dimensional market under convex portfolio constraints and convex transaction costs %J Sibirskij žurnal industrialʹnoj matematiki %D 2002 %P 133-144 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a13/ %G ru %F SJIM_2002_5_1_a13
D. B. Rokhlin. A~criterion for the nonexistence of the asymptotic free lunch in a~finite-dimensional market under convex portfolio constraints and convex transaction costs. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/SJIM_2002_5_1_a13/
[1] Jouini E., Kallal H., “Viability and equilibrium in securities markets with frictions”, Math. Finance, 9:3 (1999), 275–292 | DOI | MR | Zbl
[2] Jouini E., Kallal H., Napp C., “Arbitrage and viability in securities markets with fixed trading costs”, J. Math. Econom., 35 (2001), 197–221 | DOI | MR | Zbl
[3] Harrison J. M., Kreps D. M., “Martingales and arbitrage in multiperiod securities markets”, J. Econom. Theory, 20 (1979), 381–408 | DOI | MR | Zbl
[4] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl
[5] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl
[6] Schachermayer W., “A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time”, Insurance Math. Econom., 11 (1992), 249–257 | DOI | MR | Zbl
[7] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[8] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance and Stochastics, 2:3 (1998), 259–273 | DOI | MR | Zbl
[9] Melnikov A. V., Feoktistov K. M., “Voprosy bezarbitrazhnosti i polnoty diskretnykh rynkov i raschety platezhnykh obyazatelstv”, Obozr. prikl. i prom. matematiki, 8:1 (2001), 28–40 | MR
[10] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998
[11] Jouini E., Kallal H., “Arbitrage in securities markets with short-sales constraints”, Math. Finance, 5:3 (1995), 197–232 | DOI | MR | Zbl
[12] Shürger K., “On the existence of equivalent $\tau$-measures in finite discrete time”, Stochastic Process. Appl., 61 (1996), 109–128 | DOI | MR
[13] Pham H., Touzi N., “The fundamental theorem of asset pricingwith cone constraints”, J. Math. Econom., 31 (1999), 265–279 | DOI | MR | Zbl
[14] Jouini E., Kallal H., “Martingales and arbitrage in securities markets with transaction costs”, J. Econom. Theory, 66:1 (1995), 178–197 | DOI | MR | Zbl
[15] Kabanov Y., Stricker C., “The Harrison-Pliska arbitrage pricing theorem under transaction costs”, J. Math. Econom., 35 (2001), 185–196 | DOI | MR | Zbl
[16] Carassus L., Pham H., Touzi N., “No arbitrage in discrete time under portfolio constraints”, Math. Finance, 11:3 (2001), 315–329 | DOI | MR | Zbl
[17] Brannath W., No arbitrage andmartingalemeasures in option pricing, Doct. diss. Wien Univ., 1997
[18] Evstigneev I. V., Taksar M. I., A general framework for arbitrage pricing and hedging theorems in models of financial markets, Preprint State Unuv. of New York; SUNYSB-AMS-00-09, New York, 2000, 47 pp. | MR
[19] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl
[20] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973
[21] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[22] Yan J. A., Caractérisation d'une classe d'ensembles convexes de $L^1$ ou $H^1$, Lect. Notes in Math., 784, Springer, Berlin; Heidelberg; New York, 1980 | MR
[23] Artzner P., Delbaen F., Eber J.-M., Heath D., “Coherent measures of risk”, Math. Finance, 9:3 (1999), 203–228 | DOI | MR | Zbl