Vector space partitions of GF(2)^8
Serdica Journal of Computing, Tome 16 (2023) no. 2, pp. 71-100
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
A vector space partition P of the projective space PG(v-1,q) is a set of subspaces in PG(v-1,q) which partitions the set of points. We say that a vector space partition P has type (v-1)^{m_{v-1}} ... 2^{m_2}1^{m_1} if precisely m_i of its elements have dimension i, where 1 <= i <= v-1. Here we determine all possible types of vector space partitions in PG(7,2).
Keywords:
Finite Geometry, Vector Space Partitions, Divisible Codes, Linear Codes
@article{SJC_2023_16_2_a1,
author = {Kurz, Sascha},
title = {Vector space partitions of {GF(2)^8}},
journal = {Serdica Journal of Computing},
pages = {71--100},
year = {2023},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2023_16_2_a1/}
}
Kurz, Sascha. Vector space partitions of GF(2)^8. Serdica Journal of Computing, Tome 16 (2023) no. 2, pp. 71-100. http://geodesic.mathdoc.fr/item/SJC_2023_16_2_a1/