Vector space partitions of GF(2)^8
Serdica Journal of Computing, Tome 16 (2023) no. 2, pp. 71-100.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A vector space partition P of the projective space PG(v-1,q) is a set of subspaces in PG(v-1,q) which partitions the set of points. We say that a vector space partition P has type (v-1)^{m_{v-1}} ... 2^{m_2}1^{m_1} if precisely m_i of its elements have dimension i, where 1 <= i <= v-1. Here we determine all possible types of vector space partitions in PG(7,2).
Keywords: Finite Geometry, Vector Space Partitions, Divisible Codes, Linear Codes
@article{SJC_2023_16_2_a1,
     author = {Kurz, Sascha},
     title = {Vector space partitions of {GF(2)^8}},
     journal = {Serdica Journal of Computing},
     pages = {71--100},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2023_16_2_a1/}
}
TY  - JOUR
AU  - Kurz, Sascha
TI  - Vector space partitions of GF(2)^8
JO  - Serdica Journal of Computing
PY  - 2023
SP  - 71
EP  - 100
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2023_16_2_a1/
LA  - en
ID  - SJC_2023_16_2_a1
ER  - 
%0 Journal Article
%A Kurz, Sascha
%T Vector space partitions of GF(2)^8
%J Serdica Journal of Computing
%D 2023
%P 71-100
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2023_16_2_a1/
%G en
%F SJC_2023_16_2_a1
Kurz, Sascha. Vector space partitions of GF(2)^8. Serdica Journal of Computing, Tome 16 (2023) no. 2, pp. 71-100. http://geodesic.mathdoc.fr/item/SJC_2023_16_2_a1/