Numerical Study of Traveling Wave Solutions to 2D Boussinesq Equation
Serdica Journal of Computing, Tome 13 (2019) no. 1-2, pp. 001-016
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The aim of this paper is to evaluate stationary
propagating wave solutions to the two dimensional Boussinesq
equation. To solve the resulting nonlinear fourth order elliptic
problem we use a combination of high order finite difference
schemes, an iterative procedure and new asymptotic boundary
conditions. A number of numerical results are obtained for the
validation of the method and for the dependence of the wave's
shape on the velocity c and dispersion parameters. We also give a
comparison with the numerical results and best-fit formulae given in [4, 5].
Keywords:
Two Dimensional Boussinesq Equation, Traveling Wave Solutions (TWS), High Order Finite Dierence Schemes, Asymptotic Boundary Conditions
@article{SJC_2019_13_1-2_a0,
author = {Angelow, Krassimir and Kolkovska, Natalia},
title = {Numerical {Study} of {Traveling} {Wave} {Solutions} to {2D} {Boussinesq} {Equation}},
journal = {Serdica Journal of Computing},
pages = {001--016},
year = {2019},
volume = {13},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2019_13_1-2_a0/}
}
TY - JOUR AU - Angelow, Krassimir AU - Kolkovska, Natalia TI - Numerical Study of Traveling Wave Solutions to 2D Boussinesq Equation JO - Serdica Journal of Computing PY - 2019 SP - 001 EP - 016 VL - 13 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/SJC_2019_13_1-2_a0/ LA - en ID - SJC_2019_13_1-2_a0 ER -
Angelow, Krassimir; Kolkovska, Natalia. Numerical Study of Traveling Wave Solutions to 2D Boussinesq Equation. Serdica Journal of Computing, Tome 13 (2019) no. 1-2, pp. 001-016. http://geodesic.mathdoc.fr/item/SJC_2019_13_1-2_a0/